Strategies for pairwise searches in forensic kinship analysis.

Forensic Sci Int Genet

Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Post box 5003 NMBU, 1432 Aas, Norway.

Published: September 2021

AI Article Synopsis

  • The study focuses on assessing kinship between individuals using DNA profiles in various contexts, like crime investigations and archaeological research.
  • It advances existing methods by modeling complex relationships, including inbreeding, and utilizes both X-chromosomal and autosomal markers for more accurate results.
  • The research addresses the challenges of multiple testing errors by applying optimal thresholds and Bayesian techniques, demonstrating effectiveness through simulations and real data, with implementation options available for free.

Article Abstract

Testing kinship between pairs of individuals is central to a wide range of applications. We focus on cases where many tests are done jointly. Typical examples include cases where DNA profiles are available from a burial site, a plane crash or a database of convicted offenders. The task is to determine the relationships between DNA profiles or individuals. Our approach generalises previous methods and implementations in several respects. We model general, possibly inbred, pairwise relationships which is important for non-human applications and in archaeological studies of ancient inbred populations. Furthermore, we do not restrict attention to autosomal markers. Some cases, such as distinguishing between maternal and paternal half siblings, can be solved using X-chromosomal markers. When many tests are done, the risk of errors increases. We address this problem by building on the theory of multiple testing and show how optimal thresholds for tests can be determined. We point out that the likelihood ratios in a blind search may be dependent so multiple testing methods and interpretation need to account for this. In addition, we show how a Bayesian approach can be helpful. Our examples, using simulated and real data, demonstrate the practical importance of the methods and implementation is based on freely available software.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2021.102562DOI Listing

Publication Analysis

Top Keywords

dna profiles
8
multiple testing
8
strategies pairwise
4
pairwise searches
4
searches forensic
4
forensic kinship
4
kinship analysis
4
analysis testing
4
testing kinship
4
kinship pairs
4

Similar Publications

Study Question: Do polycystic ovary syndrome (PCOS), menstrual cycle phases, and ovulatory status affect reproductive tract (RT) microbiome profiles?

Summary Answer: We identified microbial features associated with menstrual cycle phases in the upper and lower RT microbiome, but only two specific differences in the upper RT according to PCOS status.

What Is Known Already: The vaginal and uterine microbiome profiles vary throughout the menstrual cycle. Studies have reported alterations in the vaginal microbiome among women diagnosed with PCOS.

View Article and Find Full Text PDF

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!