Our objective was to compare brain responses to trigeminal and olfactory stimuli in frequent and non-frequent gum chewers in order to explore whether habitual exposure to trigeminal stimuli affects their central-nervous processing. In healthy subjects, fMRI brain scans were obtained for 20 frequent gum chewers (GC) and 20 non-frequent gum chewers (N'GC), in response to four odorous stimuli; 2 'trigeminal' (peppermint and spearmint) and 2 non-trigeminal or 'olfactory' (cherry and strawberry). During measurements, subjects reported intensity and pleasantness ratings for all stimuli. In addition, a test for general trigeminal sensitivity test (lateralization test) and an odor threshold test was performed. Brain activations in response to individual odors were investigated for the total study population followed by group wise (GC and N'GC) analysis separately for responses to trigeminal (peppermint + spearmint) and olfactory (cherry + strawberry) odors. (1) The GC group exhibited higher trigeminal sensitivity compared to the N'GC group. (2) Olfactory odors activated bilateral insular cortex and amygdala. Apart from olfactory areas (amygdala, insular cortex), trigeminal odors also produced activations in right thalamus and right substantia nigra. (3) In the GC group, olfactory odors produced higher bilateral insular cortex activation than in N'GC group, but no such differences were observed for trigeminal odors. GC subjects appeared to be more responsive to trigeminal chemosensory stimuli. However, this did not directly translate into differences in central-nervous activations to trigeminal stimuli; instead, the use of chewing gum was associated with stronger brain activation towards olfactory stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2021.07.006 | DOI Listing |
Pain
December 2024
Program in Dental Biomedical Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States.
Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. Recent studies have suggested that external or intrinsic trauma to the temporomandibular joint (TMJ) is associated with the onset of painful TMD in patients. Here, we investigated the effects of TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors in both sexes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:
Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.
View Article and Find Full Text PDFOrbit
December 2024
Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA.
Purpose: To assess the trigeminal blink reflex in chronic orbital pain and its modification by orbital anesthetic injections using a novel blink reflexometer.
Methods: The EyeStat (Generation 3, Blinktbi, Inc. Charleston, SC) is a device that triggers and analyzes the carbon dioxide puff-evoked trigeminal blink response.
J Pain
December 2024
Laboratory of Neurobiology of Orofacial Sensations and Movements. FES Iztacala, National Autonomous University of Mexico, Mexico. Electronic address:
The study of orofacial neuropathic pain necessitates the use of innovative assessment techniques, such as the facial expression of pain, which mirrors the internal state of the animals and could be utilized to identify the neural correlations involved. The Anterior Cingulate Cortex (ACC) is a crucial center in the processing of sensory and affective components of acute and neuropathic pain. However, its role in the facial response to pain remains a mystery.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!