The emergence of SARS-CoV-2 mutations resulting in the S protein amino-acid substitutions N501Y and E484K, which have been associated with enhanced transmissibility and immune escape, respectively, necessitates immediate actions, for which their rapid identification is crucial. For the simultaneous typing of both of these mutations of concern (MOCs), a one-step real-time RT-PCR assay employing four locked nucleic acid (LNA) modified TaqMan probes was developed. The assay is highly sensitive with a LOD of 117 copies/reaction, amplification efficiencies >94 % and a linear range of over 5 log copies/reaction. Validation of the assay using known SARS-CoV-2-positive and negative samples from human and animals revealed its ability to correctly identify wild type strains, and strains possessing either one or both targeted amino-acid substitutions, thus comprising a useful pre-screening tool for rapid MOC identification. The basic principles of the methodology for the development of the assay are explained in order to facilitate the rapid design of similar assays able to detect emerging MOCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282437PMC
http://dx.doi.org/10.1016/j.jviromet.2021.114242DOI Listing

Publication Analysis

Top Keywords

amino-acid substitutions
12
one-step real-time
8
real-time rt-pcr
8
rt-pcr assay
8
simultaneous typing
8
sars-cov-2 mutations
8
protein amino-acid
8
assay
5
assay simultaneous
4
typing sars-cov-2
4

Similar Publications

Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.

View Article and Find Full Text PDF

An acidic shift in the pH profile of zearalenone hydrolase (ZHD), the most effective and well-studied zearalenone-specific lactone hydrolase, is required to extend the range of applications for the enzyme as a decontamination agent in the feed and food production industries. Amino acid substitutions were engineered in the active center of the enzyme to decrease the pKa values of the catalytic residues E126 and H242. The T216K substitution provided a shift in the pH optimum by one unit to the acidic region, accompanied by a notable expansion in the pH profile under acidic conditions.

View Article and Find Full Text PDF

Background: Rigorous assessment of antibody developability is crucial for optimizing lead candidates before progressing to clinical studies. Recent advances in predictive tools for protein structures, surface properties, stability, and immunogenicity have streamlined the development of new biologics. However, accurate prediction of the impact of single amino acid substitutions on antibody structures remains challenging, due to the diversity of complementarity-determining regions (CDRs), particularly CDR3s.

View Article and Find Full Text PDF

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF

Several peptides interact with phylogenetically unrelated G protein-coupled receptors (GPCRs); similarly, orthologous GPCRs interact with distinct ligands. The neuropeptide Substance P (SP) activates both NK1R and another unrelated primate-specific GPCR, MRGPRX2. Furthermore, MRGPRX 1, a paralog of MRGPRX2, recognizes BAM8-22, which has no evolutionary relatedness to SP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!