Petroleum oil and products recovery from oily sludge: Characterization and analysis of pyrolysis products.

Environ Res

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

Published: November 2021

Oily sludge (OS) has attracted special interest because of its hazardous nature and high potential as an energy resource. This study investigated the oil recovery from OS by thermal cracking and catalytic pyrolysis. The oil yield increased when the temperature exceeded 450 °C and reached a maximum (76.84 wt%) at 750 °C. Catalysts significantly improved the quality of oil produced during catalytic pyrolysis. Aromatic hydrocarbons were dominant (10.01-52.69%) in pyrolysis oil (PO) from OS catalytic pyrolysis, and the catalysts significantly reduced the presence of oxygen heterocycles. In addition, KOH and CaO reduced the I (D-band peak intensity)/I (G-band peak intensity) of OS char (OC) and increased the degree of graphitization. Owing to its higher iodine adsorption value and methylene blue (MB) adsorption value, OC exhibits potential as an adsorbent. The environmental assessment and potential applications of OC, along with possible reaction mechanisms and kinetic characteristics, are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111675DOI Listing

Publication Analysis

Top Keywords

catalytic pyrolysis
12
oily sludge
8
pyrolysis oil
8
pyrolysis
5
petroleum oil
4
oil products
4
products recovery
4
recovery oily
4
sludge characterization
4
characterization analysis
4

Similar Publications

Volatile organic compounds (VOCs), such as toluene, are hazardous air pollutants that pose significant health and environmental risks. This study addresses remediation of toluene by developing a bifunctional nitrogen-doped biochar (NDB) activated with sodium hydroxide (NaOH), aimed at reducing toluene emissions through both adsorption and catalytic oxidation. A series of NDB samples were prepared via NaOH activation and pyrolysis at varying temperatures to optimize their adsorption capacity and catalytic performance.

View Article and Find Full Text PDF

Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.

View Article and Find Full Text PDF

Bioenergy production from yeast through a thermo-chemical platform.

Bioresour Technol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763 Republic of Korea. Electronic address:

Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method.

View Article and Find Full Text PDF

Refining the Distinct Cu-N Coordination in Mesoporous N-Doped Carbon to Boost Selective Deuteration under Mild Conditions.

ACS Appl Mater Interfaces

January 2025

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.

Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.

View Article and Find Full Text PDF

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!