Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages. First, primary cultured neurons isolated from E12.5 embryonic hindbrain (HB), a dissection which contains all of NGC, were used to take advantage of studying neurons in vitro over using neurons in situ or in brain slices. HB neurons were tested with Guangxitoxin-1E and Resveratrol, two inhibitors of Kv2 channels which mediate the main bulk of delayed rectifier currents. Both inhibitors depressed delayed rectifier currents, but differentially: Resveratrol, but not Guangxitoxin-1E, reduced or abolished action potentials in AP trains. Since Resveratrol affects the Kv2.2 subtype, the development of the delayed rectifier mediated through Kv2.2 channels may lead to the development of HB neurons' capability to generate AP trains. Stage Two in this work found that electrophysiological properties of the primary HB neurons recorded are essentially the same as those of NGC neurons. Thus, from the two stages combined, we propose that currents mediated through Kv2.2 are crucial for generating AP trains which, in turn, lead to the development of mouse pup behavioral arousal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513459 | PMC |
http://dx.doi.org/10.1016/j.brainres.2021.147574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!