The T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) is a validated immune checkpoint protein expressed on memory CD4T-cellls, Tregs, CD8T-cell and natural killer (NK) cells. ASP8374 is a fully human monoclonal immunoglobulin (Ig) G4 antibody designed to block the interaction of TIGIT with its ligands and inhibit TIGIT signaling. ASP8374 exhibited high affinity binding to TIGIT and increased interferon (IFN)-γ production of cultured peripheral blood mononuclear cells (PBMCs) in a titratable manner. When used in combination with pembrolizumab, an anti-programmed death-1 (PD-1) antibody, ASP8374 induced higher T-cell activation in vitro than either treatment alone. An anti-mouse TIGIT antibody surrogate, mSEC1, displayed anti-tumor efficacy in an MC38 syngeneic mouse tumor model alone and in combination with an anti-programmed death-ligand 1 (PD-L1) antibody. In an additional syngeneic mouse tumor model (CT26), while mSEC1 alone did not demonstrate anti-tumor efficacy, mSEC1 combined with an anti-PD-1 antibody enhanced anti-tumor efficacy above that of the anti-PD-1 antibody alone. These data provide evidence that ASP8374 has therapeutic potential for advanced malignancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ctarc.2021.100433 | DOI Listing |
In Vivo
December 2024
Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic.
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome.
View Article and Find Full Text PDFCancer Lett
December 2024
Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
The p53 tumor suppressor is commonly mutated in cancer; however, there are no effective treatments targeting p53 mutants. A DNA vaccine gWIZ-S237G targeting the p53 S237G mutant, which is highly expressed in A20 murine tumor cells, was developed and administered intramuscularly via electroporation, either alone or in combination with PD1 blockade. The anti-p53-S237G immunization elicited a robust protective response against subcutaneous A20 tumors and facilitated the infiltration of immune cells including CD8 T cells, NK cells, and DCs.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China. Electronic address:
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!