Continuous H/CO fermentation for acetic acid production under transient and continuous sulfide inhibition.

Chemosphere

Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; CAPTURE, www.capture-resources.be, Belgium. Electronic address:

Published: December 2021

Waste gas fermentation powered by renewable H is reaching kiloton scale. The presence of sulfide, inherent to many waste gases, can cause inhibition, requiring additional gas treatment. In this work, acetogenesis and methanogenesis inhibition by sulfide were studied in a 10-L mixed-culture fermenter, supplied with CO and connected with a water electrolysis unit for electricity-powered H supply. Three cycles of inhibition (1.3 mM total dissolved sulfide (TDS)) and recovery were applied, then the fermenter was operated at 0.5 mM TDS for 35 days. During operation at 0.5 mM TDS the acetate production rate reached 7.1 ± 1.5 mmol C L d. Furthermore, 43.7 ± 15.6% of the electrons, provided as H, were distributed to acetate and 7.7 ± 4.1% to butyrate, the second most abundant fermentation product. Selectivity of sulfide as inhibitor was demonstrated by a 7 days lag-phase of methanogenesis recovery, compared to 48 h for acetogenesis and by the less than 1% electrons distribution to CH, under 0.5 mM TDS. The microbial community was dominated by Eubacterium, Proteiniphilum and an unclassified member of the Eggerthellaceae family. The taxonomic diversity of the community decreased and conversely the phenotypic diversity increased, during operation. This work illustrated the scale-up potential of waste gas fermentations, by elucidating the effect of sulfide as a common gas impurity, and by demonstrating continuous, potentially renewable supply of electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131536DOI Listing

Publication Analysis

Top Keywords

05 mm tds
12
waste gas
8
sulfide
6
continuous h/co
4
h/co fermentation
4
fermentation acetic
4
acetic acid
4
acid production
4
production transient
4
transient continuous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!