Excessive consumption of alcohol may induce severe liver damage, in part via oxidative stress and inflammatory responses, which implicates these processes as potential therapeutic approaches. Prior literature has shown that Telmisartan (TEL) may provide protective effects, presumably mediated by its anti-oxidant and anti-inflammatory activities. The purpose of this study was to determine TEL's hepatoprotective effects and to identify its possible curative mechanisms in alcoholic liver disease. A mouse chronic alcohol plus binge feedings model was used in the current study for induction of alcoholic liver disease (ALD). Our results showed that TEL (10 mg/kg/day) has the ability to reduce serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). TEL also increased the activity of superoxide dismutase (SOD) and glutathione (GSH) with concomitant reduction of nitric oxide (NO) malonaldehyde (MDA) in the liver homogenate. Moreover, TEL downregulated nuclear factor kappa B (NF-κB) expression and decreased liver content of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). These anti-inflammatory and anti-oxidant activities were associated with a significant increase in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-activated receptors -γ (PPAR-γ), and heme oxygenase-1 (Hmox-1). In conclusion, TEL's hepatoprotective effects against ALD may be attributable to its anti-inflammatory and anti-oxidant activities which may be in part via the modulation of PPAR-γ/ Nrf-2/ NF-κB crosstalk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2021.107963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!