This study aimed to detoxify and degrade the organometallic pollutants from distillery wastewater by using an autochthonous microbial community via biostimulation and bioaugmentation process. Results revealed that the wastewater contained high concentrations of the metals i.e. Fe-2403; Zn-210.15; Cr- 22.825; Cu-73.62; Mg-27.30; Ni-14.425; and Pb-17.33 (mg L). The biostimulation and bioaugmentation process resulted from a substantial reduction (50-70%) in the pollution load. Scanning electron microscopy analysis showed bacterial community and their relationship with complex organometallic pollutants during the chemical reactions. The major identified organic pollutants in the control (untreated) samples were acetic acid, Oxo-,trimethylsilyl ester [CAS], Hydrocinnamic acid, p-[Trimethylsiloxy]-trimethylsilyl ester and tetradecanoic acid, trimethylsilyl ester [CAS] while some new metabolic products were generated as a by-product in bioaugmentation process. Therefore, the study showed that biostimulation and bioaugmentation were successful bioremediation strategies for the detoxification of distillery wastewater and restoration of organometallic polluted sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.125518 | DOI Listing |
Mar Environ Res
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Petroleum-derived contamination is a growing hazard for the Arctic Ocean and northern marine transportation corridors. In northern settings where the accessibility to oil spills can be limited, natural attenuation is the most promising remediation process. The goal of the presented research is to evaluate the impact of biodegradation on crude oil inside sea ice.
View Article and Find Full Text PDFWater Res
February 2025
School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Anaerobic membrane bioreactor (AnMBR) is a promising technology for resource and energy recovery from wastewater owing to its high-quality effluent and methane production. However, membrane fouling and susceptible methanogenesis have ever compromised the AnMBR. This work attempted to mitigate membrane fouling and promote methane production simultaneously in AnMBR through bioaugmentation with a consortium consisting of both quorum quenching (QQ) bacteria and methanogens.
View Article and Find Full Text PDFSci Rep
October 2024
Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal.
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!