Excitatory synaptic transmission in the lateral habenula (LHb), an evolutionarily ancient subcortical structure, encodes aversive stimuli and affective states. Habenular glutamatergic synapses contribute to these processes partly through the activation of AMPA receptors. Yet, N-methyl-d-aspartate receptors (NMDARs) are also expressed in the LHb and support the emergence of depressive symptoms. Indeed, local NMDAR blockade in the LHb rescues anhedonia and behavioral despair in rodent models of depression. However, the subunit composition and biophysical properties of habenular NMDARs remain unknown, thereby hindering their study in the context of mental health. Here, we performed electrophysiological recordings and optogenetic-assisted circuit mapping in mice, to study pharmacologically-isolated NMDAR currents in LHb neurons that receive innervation from different brain regions (entopeduncular nucleus, lateral hypothalamic area, bed nucleus of the stria terminalis, or ventral tegmental area). This systematic approach revealed that habenular NMDAR currents are sensitive to TCN and ifenprodil - drugs that specifically inhibit GluN2A- and GluN2B-containing NMDARs, respectively. Whilst these pharmacological effects were consistently observed across inputs, we detected region-specific differences in the current-voltage relationship and decay time of NMDAR currents. Finally, inspired by the firing of LHb neurons in vivo, we designed a burst protocol capable of eliciting calcium-dependent long-term potentiation of habenular NMDAR transmission ex vivo. Altogether, we define basic biophysical and synaptic properties of NMDARs in LHb neurons, opening new avenues for studying their plasticity processes in physiological as well as pathological contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2021.108718 | DOI Listing |
Biochem Soc Trans
January 2025
Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFJ Xenobiot
January 2025
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.
View Article and Find Full Text PDFChem Biol Interact
February 2025
Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic. Electronic address:
The current pharmacological pretreatment and medical treatment of nerve agent poisoning is an insufficiently addressed medical task. The prophylactic efficacy of a novel compound acting dually as an acetylcholinesterase inhibitor and NMDA receptor antagonist (K1959) and the therapeutic efficacy of a novel NMDA receptor antagonist (K2060) were evaluated in the NMRI mice model of nerve agent poisoning by tabun, soman and sarin. Their added value to the standard antidotal treatment (a combination of oxime reactivator and atropine) was also analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!