As dye demand continues to rapidly increase in the food, pharmaceutical, cosmetic, paper, textile, and leather industries, an industrialization increase is occurring. Meanwhile, the degradation and removal of azo dyes have raised broad concern regarding the hazards posed by these dyes to the ecological environment and human health. Physicochemical treatments have been applied but are hindered by high energy and economic costs, high sludge production, and chemicals handling. Comparatively, the bioremediation technique is an eco-friendly, removal-efficient, and cost-competitive method to resolve the problem. This paper provides scientific and technical information about recent advances in the biodegradation of azo dyes. It expands the biodegradation efficiency, characteristics, and mechanisms of various microorganisms containing bacteria, fungi, microalgae, and microbial consortia, which have been reported to biodegrade azo dyes. In addition, information about physicochemical factors affecting dye biodegradation has been compiled. Furthermore, this paper also sketches the recent development and characteristics of advanced bioreactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-021-03110-6 | DOI Listing |
BMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives.
Methods: A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior.
Molecules
December 2024
Department of Pharmacy, University "G. d'Annunzio", 66100 Chieti, Italy.
The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the development of new drugs with different biological effects. Azobenzene is one of the frameworks in medicinal chemistry used for its simple synthetic methods and for the possibility to obtain a great variety of derivatives by simple chemical modifications or substitutions. Phenyldiazenyl-containing compounds show a wide spectrum of pharmacological activities, such as antimicrobial, anti-inflammatory, anti-neurodegenerative, anti-cancer, and anti-enzymatic.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
Oat beta-glucans (OBGs) are known for their beneficial effects on gut health, including anti-inflammatory and prebiotic effects. The aim of this study was to evaluate the impact of two doses (1% or 3% /) of dietary low-molar-mass OBG supplementation on colorectal cancer (CRC) development, immune cell profiles, intestinal barrier protein expression, and microbiota composition in a rat model of CRC induced by azoxymethane (AOM). Microbiome analysis revealed significant differences between the control and CRC groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!