A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scaling Metal-Elastomer Composites toward Stretchable Multi-Helical Conductive Paths for Robust Responsive Wearable Health Devices. | LitMetric

Stretchable electronics have advanced rapidly and many applications require high repeatability and robustness under various mechanical deformations. It has been described here that how a highly stretchable and reliable conductor composite made from helical copper wires and a soft elastomer, named eHelix, can provide mechanically robust and strain-insensitive electronic conductivity for wearable devices. The reversibility of the mechanical behavior of the metal-elastomer system has been studied using finite element modeling methods. Optimal design parameters of such helical metal-elastomer structures are found. The scaling of multiple copper wires into such helical shapes to form a Multi-eHelix system is further shown. With the same elastomer volume, Multi-eHelix has more conductive paths and a higher current density than the single-eHelix. Integrations of these eHelix stretchable conductors with fabrics showed wearable displays that can survive machine-washes and hundreds of mechanical loading cycles. The integration of the eHelix developed by us with a wearable optical heart rate sensor enabled a wearable health monitoring system that can display measured heart rates on clothing. Furthermore, Multi-eHelix conductors are used to connect flexible printed circuit boards and piezoresistive sensors on a tactile sensing glove for the emerging sensorized prosthetics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202100221DOI Listing

Publication Analysis

Top Keywords

conductive paths
8
wearable health
8
copper wires
8
wearable
5
scaling metal-elastomer
4
metal-elastomer composites
4
stretchable
4
composites stretchable
4
stretchable multi-helical
4
multi-helical conductive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!