Background: Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease.

Methods: We undertook large-scale integrated characterization of the molecular features of rMB-molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54).

Results: Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse.

Conclusions: rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730763PMC
http://dx.doi.org/10.1093/neuonc/noab178DOI Listing

Publication Analysis

Top Keywords

genetic drivers
12
rmb events
12
actionable genetic
8
drivers medulloblastoma
8
medulloblastoma relapse
8
genetic divergence
8
novel subtypes
8
established genetic
8
genetic
7
rmb
7

Similar Publications

Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.

View Article and Find Full Text PDF

Origin stories: how does learned migratory behaviour arise in populations?

Biol Rev Camb Philos Soc

December 2024

Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA.

Although decades of research have deepened our understanding of the proximate triggers and ultimate drivers of migrations for a range of taxa, how populations establish migrations remains a mystery. However, recent studies have begun to illuminate the interplay between genetically inherited and learned migrations, opening the door to the evaluation of how migration may be learned, established, and maintained. Nevertheless, for migratory species where the role of learning is evident, we lack a comprehensive framework for understanding how populations learn specific routes and refine migratory movements over time (i.

View Article and Find Full Text PDF

Breastfeeding and infant gut microbiota: influence of bioactive components.

Gut Microbes

December 2025

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

Establishment of the gut microbiota during infancy is critical for host health with long-lasting implications. In this orchestrated process, microbial assembly is influenced by an increasing number of genetic and environmental factors, among which breastfeeding is considered as one of the most significant drivers for infant gut microbiota development. As the optimal diet for the infants, maternal milk provides numerous nutritional, microbial, and bioactive components to ensure the most adequate microbial growth and development of a 'healthy' gut microbiota during early life.

View Article and Find Full Text PDF

Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis.

Cell Mol Life Sci

December 2024

National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.

Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence.

View Article and Find Full Text PDF

Machine learning analysis of the orbitofrontal cortex transcriptome of human opioid users identifies Shisa7 as a translational target relevant for heroin-seeking leveraging a male rat model.

Biol Psychiatry

December 2024

Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Addiction Institute of Mount Sinai, New York, New York, USA. Electronic address:

Background: Identifying neurobiological targets predictive of the molecular neuropathophysiological signature of human opioid use disorder (OUD) could expedite new treatments. OUD is characterized by dysregulated cognition and goal-directed behavior mediated by the orbitofrontal cortex (OFC), and next-generation sequencing could provide insights regarding novel targets.

Methods: Here, we used machine learning to evaluate human post-mortem OFC RNA-sequencing datasets from heroin-users and controls to identify transcripts predictive of heroin use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!