Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers.

Methods Mol Biol

GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, PA, USA.

Published: August 2021

In the first edition of this book, we presented the basics of explicitly incorporating the lipid biochemistry into a confluent cell monolayer transport model and the novel findings of this model up to 2013, including the use of global optimization to fit the elementary rate constants and the efflux active P-glycoprotein (P-gp) membrane concentrations for the transport of four P-gp substrates across MDCKII-hMDR1-NKI confluent cell monolayers. This chapter is an update on that model, which has been focused primarily on discovering how microvilli morphology regulates the efflux active P-gp and the existence of, as yet, unidentified uptake transporters of P-gp substrates in all of the commonly used P-gp expressing cell lines used in the pharmaceutical industry, thereby adding new players to DDI predictions and IVIVE. The structural mass action kinetic model uses the general mass action reactions for P-gp binding and efflux, with the membrane structural parameters for the confluent cell monolayer to predict drug transport over time. Binding of drug to P-gp occurs within the cytosolic monolayer of the apical membrane, according to (a) the molar partition coefficient of the drug to the cytosolic monolayer and (b) the association rate constant, k (M s), of the drug from the basolateral or apical outer monolayers into the P-gp binding site. Release of substrate from P-gp back into the cytosolic monolayer occurs with a dissociation rate constant k (s) or, much less frequently, into the apical aqueous chamber with an efflux rate constant k (s). The model fits the efflux active P-gp concentration, T(0), i.e., the P-gp whose effluxed drug actually reaches the apical aqueous chamber, as opposed to the majority of P-gp whose effluxed drug is reabsorbed back into the same or neighboring microvilli prior to reaching the apical aqueous chamber. Efflux active P-gp largely resides near the tips of the microvilli. We have shown using kinetics and structured illumination microscopy that: (a) efflux active P-gp is controlled by microvilli morphology; (b) there are apical (AT) and basolateral (BT) uptake transporters for P-gp substrates in most, if not all, P-gp expressing cell lines used in the pharmaceutical industry, which exist, but which remain unidentified; (c) the lab-to-lab variability in P-gp IC values observed in the P-gp IC initiative was due to the conflated inhibition of P-gp and the basolateral digoxin uptake transporters by all 15 P-gp substrates tested in that study; (d) even the IC values for P-gp inhibition alone do not obey the Cheng-Prusoff relationship; (e) the fitted elementary rate constants and the molecular dissociation constant Ki for this kinetic model are system independent; and (f) the time dependence of product formation for these confluent cell monolayers is correlated with the P-gp V/K, when defined by its fitted elementary rate constants and uptake transporter clearances, without any steady-state assumptions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1554-6_27DOI Listing

Publication Analysis

Top Keywords

p-gp
22
confluent cell
20
efflux active
20
p-gp substrates
16
active p-gp
16
mass action
12
kinetic model
12
cell monolayers
12
elementary rate
12
rate constants
12

Similar Publications

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Development and validation of a high-performance liquid chromatography method with fluorescence detection for the quantification of the resistance protein P-gp in cancer cells.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Université Clermont Auvergne, Institut Universitaire de Technologie, UMR INSERM-UCA, U1240, Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 5 Avenue Blaise Pascal, 63000 Clermont-Ferrand, France.

A method using high-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) was developed and validated to quantify the innovative tool LightSpot®-FL-1, a selective permeability-glycoprotein (P-gp)-targeted fluorescent conjugate used to measure P-gp expression in cell samples. Quantifying P-gp is a major challenge in oncology as its overexpression in many cancer cells results in Multidrug Resistance (MDR) associated with chemotherapy failure. To develop the method reported herein, both sample preparation and analysis parameters were investigated.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.

View Article and Find Full Text PDF

Potential Interaction of Pinocembrin with Drug Transporters and Hepatic Drug-Metabolizing Enzymes.

Pharmaceuticals (Basel)

January 2025

Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.

: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).

View Article and Find Full Text PDF

Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!