Crystal Structures of Drug-Metabolizing CYPs.

Methods Mol Biol

Department of Biochemistry, University at Buffalo, Buffalo, NY, USA.

Published: August 2021

The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9 ) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813703PMC
http://dx.doi.org/10.1007/978-1-0716-1554-6_7DOI Listing

Publication Analysis

Top Keywords

drug-metabolizing cyps
8
structural features
8
cyps
5
crystal structures
4
structures drug-metabolizing
4
cyps complex
4
complex enzyme
4
enzyme kinetics
4
kinetics displayed
4
displayed drug-metabolizing
4

Similar Publications

Cytochrome P450 phenotyping using the Geneva cocktail improves metabolic capacity prediction in a hospitalized patient population.

Br J Clin Pharmacol

December 2024

Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency, Geneva University Hospitals (HUG), Geneva, Switzerland.

Aims: Liver cytochromes (CYPs) play an important role in drug metabolism but display a large interindividual variability resulting both from genetic and environmental factors. Most drug dose adjustment guidelines are based on genetics performed in healthy volunteers. However, hospitalized patients are not only more likely to be the target of new prescriptions and drug treatment modifications than healthy volunteers, but will also be more subject to polypharmacy, drug-drug interactions, or to suffer from disease or inflammation affecting CYP activities.

View Article and Find Full Text PDF

Background: Xenobiotic exposures can extensively influence the expression and alternative splicing of drug-metabolizing enzymes, including cytochromes P450 (CYPs), though their transcriptome-wide impact on splicing remains underexplored. This study used a well-characterized splicing event in the Cyp2b2 gene to validate a sandwich-cultured primary rat hepatocyte model for studying global splicing in vitro. Using endpoint PCR, RNA sequencing, and bioinformatics tools (rSeqDiff, rMATs, IGV), we analyzed differential gene expression and splicing in CYP and nuclear receptor genes, as well as the entire transcriptome, to understand how xenobiotic exposures shape alternative splicing and activate xenosensors.

View Article and Find Full Text PDF

Aldehyde oxidase (AO) contributes to the clearance of many approved and investigational small molecule drugs, which are often dual substrates of AO and drug-metabolizing enzymes such as cytochrome P450s (CYPs). As such, the lack of established framework for quantitative translation of the clinical pharmacologic correlates of AO-mediated clearance represents an unmet need. This study aimed to evaluate the utility of physiologically based pharmacokinetic (PBPK) modeling in the development of AO and dual AO-CYP substrates.

View Article and Find Full Text PDF

Many factors cause inter-person variability in the activity and expression of liver cytochrome P450 (CYP) drug-metabolizing enzymes, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors (TFs) are associated with CYP expression, with estrogen receptor alpha (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the two top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown.

View Article and Find Full Text PDF

Induction of drug metabolizing enzyme and drug transporter expression by antifungal triazole pesticides in human HepaSH hepatocytes.

Chemosphere

October 2024

Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France. Electronic address:

Triazole pesticides are widely used fungicides, to which humans are rather highly exposed. They are known to activate drug-sensing receptors regulating expression of hepatic drug metabolizing enzymes and drug transporters, thus suggesting that the hepatic drug detoxification system is modified by these agrochemicals. To investigate this hypothesis, the effects of 9 triazole fungicides towards expression of drug metabolizing enzymes and transporters were characterized in cultured human HepaSH cells, that are human hepatocytes deriving from chimeric humanized liver TK-NOG mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!