Commissioning of an intra-operative US guided prostate HDR system integrating an EM tracking technology.

Brachytherapy

CHU de Québec, Radiation Oncology, Québec, Canada; CRCHU de Quebec and Centre de recherche en Cancérologie Université Laval, Québec, Canada; Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada.

Published: December 2021

Purpose: Ultrasound-based planning for high-dose-rate prostate brachytherapy is commonly used in the clinic, mainly because it offers fast real-time image-guided capability at a relatively low cost. The main difficulty with US planning is the catheter reconstruction due to artefacts (from multiple catheters) and echogenicity. Electromagnetic tracking (EMT) system offers a fast and accurate solution for automatic reconstruction of catheters using the EMT technology. In this study, the commissioning and performance evaluation of the new real-time prostate high-dose-rate brachytherapy investigational system from Philips Disease Management Solutions integrating EMT was performed before its clinical integration.

Method And Materials: The Philips' clinical investigational system includes a treatment planning software (TPS) that was commissioned based on AAPM TG53 and TG56 recommendations for the use of TPS in brachytherapy. First, the CIRS - model 045A - QA phantom was used to evaluate the ultrasound (US) image quality and 3D image handling. Distances, volumes, and dimensions of the structures inside the phantom were measured and compared to the actual values. The calibration reproducibility and accuracy of the electromagnetic (EM) sensor used to track the US probe (rotation and translation) were performed using a specifically designed QA tool mounted on the probe and immersed in a salted water tank. This was performed for 3 different B&K 8848 US probes to evaluate the sensitivity of EM calibration to the probe geometric properties (manufacturing process). The new TPS performance was compared to that in OncentraBrachy (OcB) V4.5.5 (Elekta) using 30 clinical cases as part of a retrospective study. Following the system commissioning, clinical workflows were explored; tests were performed with the brachytherapy team on phantoms and finally implemented in the clinic.

Results: US image quality evaluation showed a mean difference with actual dimensions (lengths, widths and distances) of 0.4 mm (±0.3 mm) and mean difference in volume sizes of 0.2 cc (±0.2 cc). Then, the calibration of the US-to-EM coordinate system was performed for 3 different probes. For each probe, 3 measurements were acquired for every position of the calibration tool and measurements were repeated 3 times for a total of 27 measurements per probe per plane. The error was slightly higher in transverse mode compared to sagittal mode with mean values of 0.6 ± 0.2 mm and 0.3 ± 0.1 mm respectively. 30 clinical cases were used to compare the new TPS performance to OcB (IPSA). Optimized plans obtained with both systems were all clinically acceptable, but the plans from the Philips system have slightly higher V150% values, V200% values and dose to organs at risk. In the case of organs at risk, plans could have been manually modified to reduce the dose. Philips' system had a larger number of active dwell positions and longer treatment times.

Conclusions: The first clinical version of Philips' system was proven to be stable, accurate and precise. The fully integrated EM tracking technology opens the way for automated catheter reconstruction and on-the-fly dynamical replanning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brachy.2021.05.163DOI Listing

Publication Analysis

Top Keywords

system
9
tracking technology
8
offers fast
8
catheter reconstruction
8
investigational system
8
image quality
8
tps performance
8
clinical cases
8
organs risk
8
philips' system
8

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

"The Brain is…": A Survey of the Brain's Many Definitions.

Neuroinformatics

January 2025

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.

View Article and Find Full Text PDF

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Long-term epidemiological trends in (primary) pediatric central nervous system tumors: a 25-year cohort analysis in Western Mexico.

Childs Nerv Syst

January 2025

Ph.D. Human Genetics Program, Molecular Biology and Genomics Department, Human Genetics Institute "Dr. Enrique Corona-Rivera", University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.

Background: Central nervous system tumors (CNSTs) represent a significant oncological challenge in pediatric populations, particularly in developing regions where access to diagnostic and therapeutic resources is limited.

Methods: This research investigates the epidemiology, histological classifications, and survival outcomes of CNST in a cohort of pediatric patients aged 0 to 19 years within a 25-year retrospective study at the Civil Hospital of Guadalajara, Mexico, from 1999 to 2024.

Results: Data was analyzed from 273 patients who met inclusion criteria, revealing a higher incidence in males (51.

View Article and Find Full Text PDF

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!