Background: Most plants rely on photosynthesis; therefore, albinism in plants with leaves that are white instead of green causes slow growth, dwarfing, and even death. Although albinism has been characterized in annual model plants, little is known about albino trees. Jackfruit (Artocarpus heterophyllus) is an important tropical fruit tree species. To gain insight into the mechanisms underlying the differential growth and development between albino jackfruit mutants and green seedlings, we analyzed root, stem, and leaf tissues by combining PacBio single-molecule real-time (SMRT) sequencing, high-throughput RNA-sequencing (RNA-seq), and metabolomic analysis.
Results: We identified 8,202 differentially expressed genes (DEGs), including 225 genes encoding transcription factors (TFs), from 82,572 full-length transcripts. We also identified 298 significantly changed metabolites (SCMs) in albino A. heterophyllus seedlings from a set of 692 metabolites in A. heterophyllus seedlings. Pathway analysis revealed that these DEGs were highly enriched in metabolic pathways such as 'photosynthesis', 'carbon fixation in photosynthetic organisms', 'glycolysis/gluconeogenesis', and 'TCA cycle'. Analysis of the metabolites revealed 76 SCMs associated with metabolic pathways in the albino mutants, including L-aspartic acid, citric acid, succinic acid, and fumaric acid. We selected 225 differentially expressed TF genes, 333 differentially expressed metabolic pathway genes, and 76 SCMs to construct two correlation networks. Analysis of the TF-DEG network suggested that basic helix-loop-helix (bHLH) and MYB-related TFs regulate the expression of genes involved in carbon fixation and energy metabolism to affect light responses or photomorphogenesis and normal growth. Further analysis of the DEG-SCM correlation network and the photosynthetic carbon fixation pathway suggested that NAD-ME2 (encoding a malic enzyme) and L-aspartic acid jointly inhibit carbon fixation in the albino mutants, resulting in reduced photosynthetic efficiency and inhibited plant growth.
Conclusions: Our preliminarily screening identified candidate genes and metabolites specifically affected in albino A. heterophyllus seedlings, laying the foundation for further study of the regulatory mechanism of carbon fixation during photosynthesis and energy metabolism. In addition, our findings elucidate the way genes and metabolites respond in albino trees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283932 | PMC |
http://dx.doi.org/10.1186/s12864-021-07873-y | DOI Listing |
Biotechnol Adv
December 2024
Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia. Electronic address:
Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:
Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.
Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!