Power-law (PL) time-dependent infection growth has been reported in many COVID-19 statistics. In simple susceptible infected recovered (SIR) models, the number of infections grows at the outbreak as I(t)∝t^{d-1} on d-dimensional Euclidean lattices in the endemic phase, or it follows a slower universal PL at the critical point, until finite sizes cause immunity and a crossover to an exponential decay. Heterogeneity may alter the dynamics of spreading models, and spatially inhomogeneous infection rates can cause slower decays, posing a threat of a long recovery from a pandemic. COVID-19 statistics have also provided epidemic size distributions with PL tails in several countries. Here I investigate SIR-like models on hierarchical modular networks, embedded in 2d lattices with the addition of long-range links. I show that if the topological dimension of the network is finite, average degree-dependent PL growth of prevalence emerges. Supercritically, the same exponents as those of regular graphs occur, but the topological disorder alters the critical behavior. This is also true for the epidemic size distributions. Mobility of individuals does not affect the form of the scaling behavior, except for the d=2 lattice, but it increases the magnitude of the epidemic. The addition of a superspreader hot spot also does not change the growth exponent and the exponential decay in the herd immunity regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.062112 | DOI Listing |
Trends Microbiol
January 2025
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.
Serological studies uniquely strengthen infectious disease surveillance, expanding prevalence estimates to encompass asymptomatic infections, and revealing the otherwise inapparent landscape of immunity, including who is and is not susceptible to infection. They are thus a powerful complement to often incomplete epidemiological and public health measures (administrative measures of vaccination coverage, incidence estimates, etc.).
View Article and Find Full Text PDFJ Hepatol
January 2025
Department of Biomedicine, University of Basel, Switzerland; University Centre for Gastrointestinal and Liver Disease Basel, Switzerland. Electronic address:
Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.
View Article and Find Full Text PDFCell Host Microbe
January 2025
Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
Background And Objective: Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.
Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!