A discrete and periodic complex Ginzburg-Landau equation, coupled to a mean equation, is systematically derived from a driven and dissipative lattice oscillator model, close to the onset of a supercritical Andronov-Hopf bifurcation. The oscillator model is inspired by recent experiments exploring active vibrations of quasi-one-dimensional lattices of self-propelled millimetric droplets bouncing on a vertically vibrating fluid bath. Our systematic derivation provides a direct link between the constitutive properties of the lattice system and the coefficients of the resultant amplitude equations, paving the way to compare the emergent nonlinear dynamics-namely, the onset and formation of discrete dark solitons, breathers, and traveling waves-against experiments. The framework presented herein is expected to be applicable to a wider class of oscillators characterized by the presence of a dynamic coupling potential between particles. More broadly, our results point to deeper connections between nonlinear oscillators and the physics of active and driven matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.062215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!