Flow networks can describe many natural and artificial systems. We present a model for a flow system that allows for volume accumulation, includes conduits with a nonlinear relation between current and pressure difference, and can be applied to networks of arbitrary topology. The model displays complex dynamics, including self-sustained oscillations in the absence of any dynamics in the inputs and outputs. In this work we analytically show the origin of self-sustained oscillations for the one-dimensional case. We numerically study the behavior of systems of arbitrary topology under different conditions: we discuss their excitability, the effect of different boundary conditions, and wave propagation when the network has regions of conduits with linear conductance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.062301 | DOI Listing |
Nat Commun
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.
View Article and Find Full Text PDFNAR Genom Bioinform
December 2024
Biomathematics and Statistics Scotland, The James Hutton Institute, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, United Kingdom.
This paper presents a new data structure, GIN-TONIC (raph dexing hrough ptimal ear nterval ompaction), designed to index arbitrary string-labelled directed graphs representing, for instance, pangenomes or transcriptomes. GIN-TONIC provides several capabilities not offered by other graph-indexing methods based on the FM-Index. It is non-hierarchical, handling a graph as a monolithic object; it indexes at nucleotide resolution all possible walks in the graph without the need to explicitly store them; it supports exact substring queries in polynomial time and space for all possible walk roots in the graph, even if there are exponentially many walks corresponding to such roots.
View Article and Find Full Text PDFSci Bull (Beijing)
November 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China. Electronic address:
Nanophotonics
January 2024
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Optical skyrmions, which are topological quasi-particles with nontrivial electromagnetic textures, have garnered escalating research interest recently for their potential in diverse applications. In this paper, we present a method for generating tightly focused optical skyrmion and meron topologies formed by electric-field vectors under 4-focusing system, where both the topology types (including Néel-, Bloch-, intermediate- and anti-skyrmion/meron) and the normal direction of the two-dimensional topology projection plane can be tailored at will. By utilizing time-reversal techniques, we analytically derive the radiation pattern of a multiple concentric-ring array of dipoles (MCAD) to obtain the required illumination fields on the pupil planes of the two high numerical aperture lenses.
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
Recent advances in nanotechnology have led to the emergence of metamaterials with unprecedented properties through precisely controlled topologies. To explore metamaterials with nanoscale topologies, interest in three-dimensional nanofabrication methods has grown and led to rapid production of target nanostructures over large areas. Additionally, inverse design methods have revolutionized materials science, enabling the optimization of microstructures and topologies to achieve the desired properties without extensive experimental cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!