Chromium (Cr) phytotoxicity affirmed the need of mitigation strategies to remediate polluted soils and restricts its accumulation in the food chains. Salicylic acid (SA) and silicon (Si) play pivotal roles in stimulating the plant performance and stress resilience. So far, their interactive effects against Cr-phytotoxicities are less known. Thus, we evaluated the beneficial roles of alone or/and combine applications of SA and Si in mitigating the toxic effects of Cr in the leaves and roots of rice (Oryza sativa) seedlings. Results indicated that SA (10 μM) and/or Si (5 μM) markedly retrieved the Cr (100 μM) induced toxicities by minimizing the Cr-accretion in both leaves and roots, enhancing the performance of light harvesting pigments (total chlorophylls and carotenoids), water retention and accumulation of osmolytes (water-soluble protein and total soluble sugars) and ultimately improved the growth and biomass. Additionally, SA and/or Si maintained the ionic balance by enhancing the nutrients transport, upregulated the ascorbate-glutathione (AsA-GSH) cycle enzymes, minimized the extra accumulation of reactive oxygen species (ROS) (HO and O), malondialdehyde (MDA), recovered the membrane stability and damages in cellular ultrastructure in Cr-stressed rice plants. Overall findings suggested that SA underpins Si in mitigating the Cr-induced phytotoxicities on the above-reported parameters and combined applications of SA and Si were more effective than alone treatments. The uptake or cellular accumulation of Cr, osmoprotectants level and antioxidant defense system against oxidative stress can be considered as key toxicity biomarkers for the safe cultivation of rice in Cr-contaminated soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.07.013 | DOI Listing |
Mol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Applied Biosciences, Kyungpook National University, 41566, Daegu, Republic of Korea. Electronic address:
Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.
View Article and Find Full Text PDFPlant Commun
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
Maintaining a stable basal level of salicylic acid (SA) is crucial for plant growth, development, and stress response, though basal levels of SA vary significantly among plant species. However, the molecular mechanisms by which basal SA regulates plant growth and stress response remain to be elucidated. In this study, we performed a genetic screen to identify suppressors of the root growth defect in Osaim1, a rice mutant deficient in basal SA biosynthesis.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland. Electronic address:
Currently, agriculture is facing the threat of climate change. Adaptation of plants to unfavorable growth conditions is undoubtedly a great challenge for scientists. A promising solution to this problem is priming, for which chemicals, microorganisms and phytohormones can be used.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!