A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ferromagnetic TiCNCl-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. | LitMetric

Ferromagnetic TiCNCl-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property.

J Colloid Interface Sci

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Published: December 2021

It remains urgent challenges to adopt suitable strategies to consume unwanted microwave pollution emitted by high-tech electronic devices satisfactorily. Confronted with narrow effective absorption bandwidth (EAB) and high filler loading bottlenecks of MXene-Based microwave absorber, herein, we employ Lewis molten salt etching approach to both exfoliate TiAlCN powders into TiCNCl suspension and intercalate ferromagnetic composition into interlamination simultaneously. By utilizing the crosslinking effect of dopamine, the TiCNCl are anchored on the surfaces of graphene oxide (GO) nanosheets, constructing interconnecting microstructure. Both the 3D conductive network and the modification of MXene manifest crucial impacts on enhancing microwave absorption performance of the resulting ultra-lightweight reduced GO (RGO)-based aerogel. The minimum intensity of reflection loss achieves -62.62 dB with the absorber mass loading of 0.7 wt%. Remarkably, more than 90% of the incident microwave is qualified to be absorbed over the whole Ku band. The EAB is broadened while tailoring the thickness to 3 mm, ranging from 10.2 to 18 GHz. Besides, the aerogel presents valuable thermal insulation properties. Our methodology of synthesizing MXene/RGO aerogel not only provides promising insights into microstructural construction but also endows the possibility for integrating thermal insulation property towards next-generation high-performance microwave absorption devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.05.166DOI Listing

Publication Analysis

Top Keywords

thermal insulation
12
conductive network
8
microwave absorber
8
insulation property
8
microwave absorption
8
microwave
6
ferromagnetic ticncl-decorated
4
ticncl-decorated rgo
4
aerogel
4
rgo aerogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!