Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production.

J Colloid Interface Sci

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium. Electronic address:

Published: December 2021

Gold nanoparticles (Au NPs) with surface plasmonic resonance (SPR) effect and excellent internal electron transfer ability have widely been combined with semiconductors for photocatalysis. However, the in-depth effects of Au NPs in multicomponent photocatalysts have not been completely understood. Herein, ternary titanium oxide-gold-cadmium sulfide (TiO-Au-CdS, TAC) photocatalysts, based on hierarchical TiO inverse opal photonic crystal structure with different Au NPs sizes have been designed to reveal the SPR effect and internal electron transfer of Au NPs in the presence of slow photon effect. It appears that the SPR effect and internal electron transfer ability of Au NPs, depending on their sizes, play a synergistic effect on the photocatalytic enhancement. The ternary TAC-10 photocatalyst with ~ 10 nm Au NPs demonstrates an unprecedented hydrogen evolution rate of 47.6 mmolhg under visible-light, demonstrating ~ 48% enhancement comparing to the sample without slow photon effect. In particular, a 9.83% apparent quantum yield under 450 nm monochromatic light is achieved for TAC-10. A model is proposed and finite-difference time-domain (FDTD) simulations reveal the size influence of Au NPs in ternary TAC photocatalysts. This work suggests that the rational design of bifunctional Au NPs coupling with slow photon effect could largely promote hydrogen production from visible-light driven water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.06.167DOI Listing

Publication Analysis

Top Keywords

slow photon
16
internal electron
12
electron transfer
12
titanium oxide-gold-cadmium
8
oxide-gold-cadmium sulfide
8
hydrogen production
8
nps
8
transfer ability
8
tac photocatalysts
8
spr internal
8

Similar Publications

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

A new perspective on drug-resistant epilepsy in children with focal cortical dysplasia type 1: From challenge to favorable outcome.

Epilepsia

December 2024

Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, full member of the European Reference Network EpiCARE, Prague, Czech Republic.

Objective: We comprehensively characterized a large pediatric cohort with focal cortical dysplasia (FCD) type 1 to expand the phenotypic spectrum and to identify predictors of postsurgical outcomes.

Methods: We included pediatric patients with histopathological diagnosis of isolated FCD type 1 and at least 1 year of postsurgical follow-up. We systematically reanalyzed clinical, electrophysiological, and radiological features.

View Article and Find Full Text PDF

In Vivo Neurodynamics Mapping via High-Speed Two-Photon Fluorescence Lifetime Volumetric Projection Microscopy.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Monitoring the morphological and biochemical information of neurons and glial cells at high temporal resolution in three-dimensional (3D) volumes of in vivo is pivotal for understanding their structure and function, and quantifying the brain microenvironment. Conventional two-photon fluorescence lifetime volumetric imaging speed faces the acquisition speed challenges of slow serial focal tomographic scanning, complex post-processing procedures for lifetime images, and inherent trade-offs among contrast, signal-to-noise ratio, and speed. This study presents a two-photon fluorescence lifetime volumetric projection microscopy using an axially elongated Bessel focus and instant frequency-domain fluorescence lifetime technique, and integrating with a convolutional network to enhance the imaging speed for in vivo neurodynamics mapping.

View Article and Find Full Text PDF

Landau Rainbow Induced by Artificial Gauge Fields.

Phys Rev Lett

December 2024

New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.

The ability to generate Landau levels using a pseudomagnetic field (PMF), also called an artificial gauge field, opens up new pathways for exploring fundamental physics and developing novel applications based on topological protection. In this Letter, we simultaneously realize a PMF and a pseudoelectric field (PEF) on a photonic crystal platform and observe a rainbow effect of the Landau zeroth modes. While a PMF induces a series of discretized Landau levels of photons in a similar way as the quantum Hall effect for electrons, a PEF breaks the degeneracy of the flat band of Landau levels over a broad range.

View Article and Find Full Text PDF

Improving Visible Light Photocatalysis Using Optical Defects in CoO-TiO Photonic Crystals.

Materials (Basel)

December 2024

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

The rational design of photonic crystal photocatalysts has attracted significant interest in order to improve their light harvesting and photocatalytic performances. In this work, an advanced approach to enhance slow light propagation and visible light photocatalysis is demonstrated for the first time by integrating a planar defect into CoO-TiO inverse opals. Trilayer photonic crystal films were fabricated through the successive deposition of an inverse opal TiO underlayer, a thin titania interlayer, and a photonic top layer, whose visible light activation was implemented through surface modification with CoO nanoscale complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!