As military applications of the insensitive munitions compounds (IMCs) 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) increase, there is a growing need to understand their environmental fate and to develop remediation strategies to mitigate their impacts. Iron (II) monosulfide (FeS) minerals are abundant in freshwater and marine sediments, marshes, and hydrothermal environments. This study shows that FeS solids can reduce DNAN and NTO to their corresponding amines under anoxic ambient conditions. The reactions between IMCs and the FeS minerals were surface-mediated since they did not occur when only dissolved Fe and S were present. Mackinawite, a tetragonal FeS with a layered structure, reduced DNAN mainly to 2-methoxy-5-nitroaniline (MENA), which in turn was partially reduced to 2-4-diaminoanisole (DAAN). The layered structure of mackinawite provided intercalation sites likely responsible for partial adsorption of MENA and DAAN. Mackinawite entirely reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO). The reduction of IMCs showed concurrent oxidation of mackinawite to goethite and elemental sulfur. A commercial FeS product, composed mainly of pyrrhotite and troilite, reduced DNAN to DAAN and NTO to ATO. At pH 6.5, DNAN and NTO transformation rates were 667 and 912 μmol h m, respectively, on the mackinawite surface and 417 and 1344 μmol h m, respectively, on the commercial FeS surface. This is the first report of the reduction of a nitro-heterocyclic compound (NTO) by FeS minerals. The evidence indicates that DNAN and NTO can be rapidly transformed to their succeeding amines in anoxic subsurface environments and aquatic sediments rich in FeS minerals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131409DOI Listing

Publication Analysis

Top Keywords

fes minerals
20
dnan nto
12
fes
9
monosulfide fes
8
insensitive munitions
8
munitions compounds
8
24-dinitroanisole dnan
8
dnan 3-nitro-124-triazol-5-one
8
nto
8
3-nitro-124-triazol-5-one nto
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!