Background And Purpose: The association between the cerebral microbleed (CMB) count and outcomes in ischemic stroke has not been fully clarified. The aim of this study was to investigate the relationship between the CMBs count and functional outcomes in patients with a minor ischemic stroke treated with antiplatelet therapy METHODS: Non-cardiogenic minor ischemic stroke (NIHSS score < 4 on admission) patients who were treated with antiplatelet therapy were enrolled. The patients were divided into four groups based on the number of CMBs (absent, 1, 2-4, and > 4), and their clinical outcomes were compared. A poor outcome was defined as a modified Rankin scale (mRS) score of 3-6 90 days after symptom onset. Logistic regression analysis was performed to evaluate whether the CMBs count contributes to poor outcomes with well-known risk factors such as age, NIHSS score on admission, ischemic stroke recurrence, large artery atherosclerosis stroke subtype, and DWMHs.
Results: A total of 240 patients were enrolled, and their pre mRS scores were matched based on CMB presence. A higher burden of CMBs was linearly correlated with the incidence of poor outcomes (4% in the absent group, 8% in the 1 CMB group, 13% in the 2-4 CMB group, and 20% in the > 4 CMB group, P = 0.002). Multivariate logistic regression analysis showed that CMBs count was one of the independent factor associated with poor outcomes (odds ratio 1.07, 95% confidence interval 1.02-1.12, P = 0.003).
Conclusion: The CMBs count contributes independently to poor outcomes in minor ischemic stroke patients treated with antiplatelet therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105973 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.
Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.
J Integr Neurosci
December 2024
Department of Neurology, Hainan West Central Hospital, 571799 Danzhou, Hainan, China.
Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.
Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.
CJC Open
December 2024
Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
Background: Mitral annular calcification (MAC) is a common chronic degenerative process of the mitral valve. Thrombus formation on MAC is a rare complication that likely contributes to the increased risk of thromboembolic events. Outcomes and management strategies for this condition are unknown.
View Article and Find Full Text PDFCureus
November 2024
Neurology, NeuroCareAI, Dallas, USA.
Stroke remains a critical global health challenge, with ischemic stroke comprising most cases and necessitating rapid, effective treatment to improve patient outcomes. This review explores the integration of artificial intelligence (AI) and machine learning into medical devices for stroke triaging, highlighting their impact on reducing notification times, latency in care, and health disparities. By analyzing Food and Drug Administration-approved AI-enabled devices under the "Radiological computer-assisted triage and notification software" regulation category, we assess their sensitivity, specificity, and time-to-notification as the measure of their overall effectiveness in clinical settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!