Search for safer and potent natural inhibitors of Parkinson's disease.

Neurochem Int

Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman. Electronic address:

Published: October 2021

After Alzheimer's disease, Parkinson's disease (PD) has taken second place in becoming one of the most commonly occurring neurological diseases being responsible for a number of disabling motor symptoms ranging from bradykinesia, akinesia, tremors to rigidity, that mostly targets the elderly population and severely disrupts their quality of life. The true underlying pathology of PD yet remains a mystery, however, recent advances in the field have pointed towards the production of α-synuclein aggregates, oxidative stress, and an imbalance between levels of acetylcholine and dopamine neurotransmitters in the brain that have been shown to result in loss of coordinated movement. Current treatments of PD include the gold standard dopamine precursor L-dopa, dopamine agonists pergolide and bromocriptine, catechol-o-methyl transferases inhibitors, entacapone and tolcapone and monoamine oxidase inhibitors such as Selegine and Rasagiline amongst several other drugs. While these drugs are successful in treating motor symptoms of the disease, they do so with a plethora of side effects that are especially debilitating to the elderly. In the recent years, a considerable amount of attention has been shifted towards phytocompounds such as flavonoids and green tea catechins due to promising experimental results. In this review, we have compiled phytocompounds that have shown potent activity against some of the most important targets for antiparkinsonian therapy. These compounds have exhibited activities that transcend the limits of simply attenuating mitochondrial oxidative stress and have opened doors to the discovery of novel lead compounds for newer, efficacious antiparkinsonian therapies with wider therapeutic windows.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2021.105135DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
motor symptoms
8
oxidative stress
8
search safer
4
safer potent
4
potent natural
4
natural inhibitors
4
inhibitors parkinson's
4
disease
4
disease alzheimer's
4

Similar Publications

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Foreign Contaminants Target Brain Health.

CNS Neurol Disord Drug Targets

January 2025

Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, India-110017.

Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Bioinformatics Analysis Reveals Microrchidia Family Genes as the Prognostic and Therapeutic Markers for Colorectal Cancer.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.

Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).

Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!