Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Shifts of frequency and bandwidth of a quartz crystal microbalance (QCM) in contact with a structured, viscoelastic sample have been computed with a linearized version of the lattice Boltzmann method (LBM). The algorithm operates in the frequency domain and covers viscoelasticity. The different domains are characterized by different values of the complex viscosity, η, equivalent to different values of the shear modulus, . Stiff particles are given large |η|, where |η| must be less than ∼100 η with η the viscosity of the ambient liquid. Critical to the computational efficiency is a match of the LBM populations at the upper boundary of the simulation box to an analytical solution of the Stokes equation in the bulk above the box. The application example is a test of the ΔΓ/(-Δ)-extrapolation scheme, where Δ and ΔΓ are the shifts in resonance frequency and half bandwidth, respectively. For adsorbed particles, plots of ΔΓ/(-Δ) versus - Δ/ (with the overtone order) show almost straight lines. The extrapolation of these lines to zero yields a frequency shift, which, after conversion to a thickness with the Sauerbrey equation, closely agrees with the height of the particles. Plots of Δ/ and ΔΓ/ versus look similar to the corresponding plots obtained for viscoelastic films, where the parameters, which would usually be extracted from those plots (apparent mass and apparent compliance), depend on the geometry and the sample's viscoelasticity in a nontrivial way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01612 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!