Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202005944 | DOI Listing |
Anal Chem
March 2025
Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.
Accurate and rapid aflatoxin B1 (AFB1) detection is essential for ensuring the safety of food supplies. In this paper, we introduce a distance-readout paper-based microfluidic chip (DPMC) that offers a sensitive and reliable method for the detection of AFB1. The DPMC comprises a DNA hydrogel sensitive valve and a paper-based capillary channel.
View Article and Find Full Text PDFLab Chip
March 2025
College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
Cancer is a serious disease in human beings, and its high lethality is mainly due to the invasion and metastasis of cancer cells. Clinically, the accumulation and high orientation of collagen fibrils were observed in cancerous tissue, which occurred not only at the location of invasion but also at 10-20 cm from the tumor. Studies indicated that the invasion of cancer cells could be guided by the oriented collagen fibrils, even in a dense matrix characterized by difficulty degradation.
View Article and Find Full Text PDFLab Chip
March 2025
Seagate Technology LLC, 1280 Disc Dr, Shakopee, MN 55379, USA.
The rapid growth in data generation presents a significant challenge for conventional storage technologies. DNA storage has emerged as a promising solution, offering substantially greater storage density and durability. However, the current DNA data writing process is costly and labor-intensive, hindering the commercialization of DNA data storage.
View Article and Find Full Text PDFLab Chip
March 2025
LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France.
Experiments with gradients of soluble bioactive species have significantly advanced with microfluidic developments that enable cell observation and stringent control of environmental conditions. While some methodologies rely on flow to establish gradients, others opt for flow-free conditions, which is particularly beneficial for studying non-adherent and/or shear-sensitive cells. In flow-free devices, bioactive species diffuse either through resistive microchannels in microchannel-based devices, through a porous membrane in membrane-based devices, or through a hydrogel in gel-based devices.
View Article and Find Full Text PDFClin J Am Soc Nephrol
March 2025
Boston Children's Hospital, and Harvard Medical School, Boston, MA.
Background: Recent studies indicate that up to 36% of pediatric and adult kidney transplant recipients with stable serum creatinine levels will have acute rejection detected on surveillance biopsy. The purpose of this study was to develop and validate a risk algorithm for identifying low- and high-risk patients using a novel automated platform that simultaneously measures urinary CCL2, CXCL9, CXCL10 and VEGF-A with high precision.
Methods: We designed a multicenter observational study to evaluate the performance of urinary CCL2, CXCL9, CXCL10 and VEGF-A in a training set of 517 banked samples collected at the time of surveillance or indication kidney biopsies from both adult and pediatric recipients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!