Probing Rotated Weyl Physics on Nonlinear Lithium Niobate-on-Insulator Chips.

Phys Rev Lett

National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Published: July 2021

AI Article Synopsis

  • Topological photonics utilizes stable edge states to create robust devices, and this study investigates topological rotated Weyl physics in a 3D parameter space using quaternary waveguide arrays on LNOI chips.
  • This research allows the experimental construction of interfaces between two Weyl structures that can freely rotate, which wasn't easily achievable in traditional 3D Weyl semimetals due to lattice issues.
  • The findings on gapless topological interface states (TISs) depend on the rotational directions of the Weyl structures, with the research paving the way for new applications in nonlinear and quantum optics using LNOI technology.

Article Abstract

Topological photonics, featured by stable topological edge states resistant to perturbations, has been utilized to design robust integrated devices. Here, we present a study exploring the intriguing topological rotated Weyl physics in a 3D parameter space based on quaternary waveguide arrays on lithium niobate-on-insulator (LNOI) chips. Unlike previous works that focus on the Fermi arc surface states of a single Weyl structure, we can experimentally construct arbitrary interfaces between two Weyl structures whose orientations can be freely rotated in the synthetic parameter space. This intriguing system was difficult to realize in usual 3D Weyl semimetals due to lattice mismatch. We found whether the interface can host gapless topological interface states or not is determined by the relative rotational directions of the two Weyl structures. In the experiment, we have probed the local characteristics of the TISs through linear optical transmission and nonlinear second harmonic generation. Our study introduces a novel path to explore topological photonics on LNOI chips and various applications in integrated nonlinear and quantum optics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.013901DOI Listing

Publication Analysis

Top Keywords

rotated weyl
8
weyl physics
8
lithium niobate-on-insulator
8
topological photonics
8
parameter space
8
lnoi chips
8
weyl structures
8
weyl
6
topological
5
probing rotated
4

Similar Publications

Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.

View Article and Find Full Text PDF

For over a century, the Hall effect, a transverse effect under an out-of-plane magnetic field or magnetization, has been a cornerstone for magnetotransport studies and applications. Modern theoretical formulation based on the Berry curvature has revealed the potential that even an in-plane magnetic field can induce an anomalous Hall effect, but its experimental demonstration has remained difficult due to its potentially small magnitude and strict symmetry requirements. Here, we report observation of the in-plane anomalous Hall effect by measuring low-carrier density films of magnetic Weyl semimetal EuCd_{2}Sb_{2}.

View Article and Find Full Text PDF

Spintronics based on ferromagnets has enabled the development of microwave oscillators and diodes. To achieve even faster operation, antiferromagnets hold great promise despite their challenging manipulation. So far, controlling antiferromagnetic order with microwave currents remains elusive.

View Article and Find Full Text PDF

Multiple Weyl fermions and topological phase transition in two-dimensional ferromagnetic CrS.

Phys Chem Chem Phys

December 2024

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.

Article Synopsis
  • - The research focuses on a new two-dimensional ferromagnetic material, CrS, which features multiple Weyl points and can change its topological state by altering the direction of its magnetization.
  • - Distinct types of Weyl points were identified around the Fermi level, with corresponding Fermi arcs observable at the edges of the material, suggesting significant potential for applications in spintronics.
  • - The study shows that while Weyl points remain stable under certain biaxial strains, they are sensitive to uniaxial strain, highlighting the tunable nature of the topological states in CrS through external magnetic fields and strain.
View Article and Find Full Text PDF

Changes in the number of Weyl nodes in Weyl semimetals occur through merging processes, usually involving a pair of oppositely charged nodes. More complicated processes involving multiple Weyl nodes are also possible, but they typically require fine tuning and are thus less stable. In this Letter, we study how symmetries affect the allowed merging processes and their stability, focusing on the combination of a twofold rotation and time-reversal (C_{2}T) symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!