Synergistic effects of exercise and catalase overexpression on gut microbiome.

Environ Microbiol

Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV.

Published: September 2022

Exercise influences metabolic parameters in part by modulating redox stress and as recently suggested, by affecting the gut microbiome. However, whether excess endogenous antioxidant potentiates or interferes with the beneficial effects of exercise on the gut microbiome is not known. A comparison of the gut microbiome of C57Bl6 (C57/WT) mice to the 'stress-less' catalase overexpressing mice models ([Tg(CAT) ] and Bob-Cat), that were either exercised or remained sedentary, showed differences in both alpha and beta diversity. The significant variation was explained by genotypes along with exercise, suggesting a synergistic relationship between exercise and genotypic traits. Linear discriminant analysis effect size (LEfSe) analysis also revealed differential taxa within the exercised/genotype cohorts in contrast to those within sedentary/genotype cohorts. Functional pathway predictions from PICRUSt2 showed enrichment for the metabolism of short-chain fatty acids, butanoate and propanoate pathways in exercised groups. Spearman correlations between enriched taxa and metabolic parameters showed correlations with body or fat weight in some of the cohorts. However, there were significant correlations of differential taxa among all cohorts against parameters that predict energy metabolism, such as respiratory exchange ratio and energy expenditure. Overall, our study showed that there was a synergistic beneficial influence of antioxidant overexpression and exercise on the gut microbiome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761204PMC
http://dx.doi.org/10.1111/1462-2920.15670DOI Listing

Publication Analysis

Top Keywords

gut microbiome
20
effects exercise
8
metabolic parameters
8
exercise gut
8
differential taxa
8
exercise
6
gut
5
microbiome
5
synergistic effects
4
exercise catalase
4

Similar Publications

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.

View Article and Find Full Text PDF

Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!