Molecular Imaging, How Close to Clinical Precision Medicine in Lung, Brain, Prostate and Breast Cancers.

Mol Imaging Biol

NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China.

Published: February 2022

Precision medicine is playing a pivotal role in strategies of cancer therapy. Unlike conventional one-size-fits-all chemotherapy or radiotherapy modalities, precision medicine could customize an individual treatment plan for cancer patients to acquire superior efficacy, while minimizing side effects. Precision medicine in cancer therapy relies on precise and timely tumor biological information. Traditional tissue biopsies, however, are often inadequate in meeting this requirement due to cancer heterogeneity, poor tolerance, and invasiveness. Molecular imaging could detect tumor biology characterization in a noninvasive and visual manner, and provide information about therapeutic targets, treatment response, and pharmacodynamic evaluation. This summates to significant value in guiding cancer precision medicine in aspects of patient screening, treatment monitoring, and estimating prognoses. Although growing clinical evidences support the further application of molecular imaging in precision medicine of cancer, some challenges remain. In this review, we briefly summarize and discuss representative clinical trials of molecular imaging in improving precision medicine of cancer patients, aiming to provide useful references for facilitating further clinical translation of molecular imaging to precision medicine of cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-021-01631-yDOI Listing

Publication Analysis

Top Keywords

precision medicine
32
molecular imaging
20
medicine cancer
12
precision
8
medicine
8
cancer therapy
8
cancer patients
8
imaging precision
8
cancer
7
molecular
5

Similar Publications

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

This document aims to provide good practice recommendations in order to support maternal-foetal medicine specialists, clinical geneticists and clinical laboratory geneticists in the management of pregnancies obtained after the transfer of an embryo tested with preimplantation genetic testing (PGT). It was drafted by geneticists expert in preimplantation genetics and prenatal genetic diagnosis belonging to the "Working Group in Cytogenomics, Prenatal and Reproductive Genetics" of the "Italian Society of Human Genetics" (SIGU). In particular, the paper addresses the diagnostic algorithm to be applied in prenatal follow-up depending on the type of PGT performed, the results obtained and the related diagnostic value based on the most recent literature data and Italian and international recommendations.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Objectives: In advanced stages of osteoradionecrosis, medication-related osteonecrosis of the jaw, and osteomyelitis, a resection of sections of the mandible may be unavoidable. The determination of adequate bony resection margins is a fundamental problem because bony resection margins cannot be secured intraoperatively. Single-photon emission computed tomography (SPECT-CT) is more accurate than conventional imaging techniques in detecting inflammatory jaw pathologies.

View Article and Find Full Text PDF

The application of the technique for dorsal median sulcus mapping in intramedullary space occupying surgery: a single-center experience.

Acta Neurochir (Wien)

January 2025

Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.

Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!