Hot punching for loading of biodegradable microcontainers with budesonide-Soluplus film.

Biomed Microdevices

The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.

Published: July 2021

Micro-reservoir based drug delivery systems have the potential to provide targeted drug release locally in the intestine, i.e. at the inflamed areas of the intestine of patients with inflammatory bowel disease (IBD). In this study, microcontainers with a diameter of 300 µm and a height of 100 µm, asymmetrical geometry and the possibility to provide unidirectional release, are fabricated in the biodegradable polymer poly-ɛ-caprolactone (PCL) using hot punching. As a first step towards local treatment of IBD, a novel method for loading of microcontainers with the corticosteroid budesonide is developed. For this purpose, a budesonide-Soluplus drug-polymer film is prepared by spin coating and loaded into the microcontainer reservoirs using hot punching. The processing parameters are optimized to achieve a complete loading of a large number of containers in a single step. A poly(lactic-co-glycolic acid) (PLGA) 50:50 lid is subsequently applied by spray coating. Solid-state characterization indicates that the drug is in an amorphous state in the drug-polymer films and the in vitro drug release profile showed a 68% release over 10 h. The results demonstrate that hot punching can be employed both as a production and loading method for PCL microcontainers with the perspective of local treatment of IBD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-021-00572-1DOI Listing

Publication Analysis

Top Keywords

hot punching
16
drug release
8
local treatment
8
treatment ibd
8
hot
4
loading
4
punching loading
4
loading biodegradable
4
microcontainers
4
biodegradable microcontainers
4

Similar Publications

Article Synopsis
  • Current graphene patterning techniques like electron beam lithography and nano imprint lithography are slow and less effective for larger samples, often resulting in rough edges and misalignment.
  • This study introduces hot punching as a new and efficient method for patterning CVD graphene sheets supported by a PVA layer, allowing for the creation of nanoribbons.
  • The effects of hot punching on the graphene are analyzed through various methods, showing improvements such as aligned and smoother edges, along with the occurrence of wrinkling and strain.
View Article and Find Full Text PDF

Objective: The objective of this study is to create predictive models utilizing machine learning algorithms, including Artificial Neural Networks (ANN), k-nearest neighbor (kNN), support vector machines (SVM), and linear regression, to predict critical quality attributes (CQAs) such as hardness, friability, and disintegration time of fast disintegrating tablets (FDTs).

Methods: A dataset of 864 batches of FDTs was generated by varying binder types and amounts, disintegrants, diluents, punch sizes, and compression forces. Preprocessing steps included normalizing numerical features based on industry standards, one-hot encoding for categorical variables, and addressing outliers to ensure data consistency.

View Article and Find Full Text PDF

Enhancing productivity through work study - A case of electric power pole cross arm fabrication.

Heliyon

June 2024

Mechanical Engineering Program, Faculty of Mechanical and Industrial Engineering, Institute of Technology, Bahir Dar University, Ethiopia.

In the area of globalization any manufacturing industry must be competent in terms of productivity, quality, cost and delivery. A fundamental improvement in production is necessary to succeed in the international markets. Work study is one of the earliest scientific management methods used to determine the best way to perform production tasks in order to reduce idle time and worker fatigue as a result, increase productivity.

View Article and Find Full Text PDF

The effects of the secondary processes of Hot Isostatic Pressing (HIP) at 920 °C and Heat Treatment (HT) at 1000 °C of Electron Beam-Melted (EBM) Ti-6Al-4V alloy on the microstructure and hydrogen embrittlement (HE) after electrochemical hydrogen charging (EC) were investigated. Comprehensive characterization, including microstructural analysis, X-ray diffraction (XRD), thermal desorption analysis, and mechanical testing, was conducted. After HIP, the β-phase morphology changed from discontinuous Widmanstätten to a more continuous structure, 10 times and ~1.

View Article and Find Full Text PDF

In this work, we propose a SiC-NSFET structure that uses a PTS scheme only under the gate, with SiC layers under the source and drain, to improve the leakage current and thermal reliability. Punch-through stopper (PTS) doping is widely used to suppress the leakage current, but aggressively high PTS doping will cause additional band-to-band (BTBT) current. Therefore, the bottom oxide isolation nanosheet field-effect transistor (BOX-NSFET) can further reduce the leakage current and become an alternative to conventional structures with PTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!