Motor control requires a reciprocal volley between somatosensory and motor systems, with somatosensory feedback being essential for the online updating of motor commands to achieve behavioral outcomes. However, this dynamic interplay among sensorimotor brain systems serving motor control remains poorly understood. To address this, we designed a novel somatosensory entrainment-movement task, which 25 adults completed during magnetoencephalography (MEG). Specifically, participants completed a quasi-paced finger-tapping paradigm while subthreshold electrical stimulation was applied to the right median nerve at a sensorimotor-relevant frequency (15 Hz) and during a second condition where no electrical stimulation was applied. The MEG data were transformed into the time-frequency domain and imaged by using a beamformer to evaluate the effect of somatosensory feedback (i.e., entrainment) on movement-related oscillations and motor performance at the single trial level. Our results indicated spectrally specific reductions in movement-related oscillatory power (i.e., theta, gamma) during 15 Hz stimulation in the contralateral motor cortex during motor execution. In addition, we observed robust cross-frequency coupling within the motor cortex and further, stronger theta-gamma coupling was predictive of faster reaction times, irrespective of condition (i.e., stim vs. no stim). Finally, in the presence of electrical stimulation, cross-frequency coupling of movement-related oscillations was reduced, and the stronger the entrained neuronal populations (i.e., increased oscillatory power) were before movement onset, the weaker the inherent theta-gamma coupling became in the motor cortex. This novel exogenous manipulation paradigm provides key insights on how the somatosensory system modulates the motor cortical oscillations required for volitional movement in the normative sensorimotor system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419931 | PMC |
http://dx.doi.org/10.1089/brain.2021.0003 | DOI Listing |
J Neural Eng
January 2025
Zhengzhou University, No.100, Kexuedadao Road, Zhengzhou, 450001, CHINA.
The Readiness Potential (RP) is an important neural characteristic in motor preparation-based brain-computer interface (MP-BCI). In our previous research, we observed a significant decrease of the RP amplitude in some cases, which severely affects the pre-movement patterns detection. In this paper, we aimed to improve the accuracy of pre-movement patterns detection in the condition of RP decrease.
View Article and Find Full Text PDFBrain Res Bull
January 2025
School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China. Electronic address:
Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research.
View Article and Find Full Text PDFNeurocrit Care
January 2025
Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.
Neurosci Biobehav Rev
December 2024
Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States.
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!