To develop a timely and accurate method for predicting acute myeloid leukemia (AML) prognosis after chemotherapy treatment by surface-enhanced Raman spectroscopy (SERS). Biomolecular differences between AML patients with good and poor prognosis and individuals without AML were investigated based on SERS measurements of bone marrow supernatant fluid samples. Multivariate analysis was implemented on the SERS measurements to establish an AML prognostic model. Significant differences in amino acid, saccharide and lipid levels were observed between AML patients with good and poor prognoses. The AML prognostic model achieved a prediction accuracy of 84.78%. The proposed method could be a potential diagnostic tool for timely and precise prediction of AML prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2021-0199 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.
Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany.
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada.
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany.
Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!