It is of great significance to disclose the diverse aging pathways for polymers under multiple factors, so as to predict and control the potential aging evolution. However, the current methods fail to distinguish multiple pathways (multi-paths) of polymer aging due to the lack of spatiotemporal resolution. In this work, using polyimide as a model polymer, the hydroxyl, carboxyl, and amino groups from the polyimide aging process were labeled using specific fluorescent probes through boron-oxygen, imine, and thiourea linkages, respectively. When the excitation and emission wavelengths of each fluorescent probe were controlled, the multi-paths in polyimide aging can be visualized individually and simultaneously in three-dimensional fluorescent images. The overall aging process under hydrothermal treatment was destructured into the pyrolysis and hydrolysis pathways. Three-dimensional dynamic studies discovered that the increased humidity, along with the decreased oxygen content, could hamper the pyrolysis reaction and accelerate the hydrolysis reaction, leading to severe degradation of the overall polyimide aging. More importantly, the oxygen showed a higher regulation coefficient in accelerating the pyrolysis reaction, than the water vapor in motivating the hydrolysis reactions. Such a multidimensional identification methodology is able to guide the long-term use of polymers and control their aging process to a harmless direction in advance by tuning the contents of oxygen and water vapor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01784 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
Polymeric materials are commonly used as the outermost layer in spacecraft passive thermal control. However, in geostationary earth orbit environments, the polymeric layer is susceptible to environmental hazards, particularly electrostatic charges. In this study, we develop a graphene-based coating on a polymeric polyimide (Kapton) and discuss its suitability in simulated harsh space environments for electrostatic dissipation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
High temperature resistant and self-cleaning superhydrophobic flexible film has potential application value in lunar exploration. In this paper, a novel method of magnetic field-assisted ultrafast laser induced plasma was proposed to fabricate strongly superhydrophobic graphene on polyimide film with multi-level micro-nano structure. The longitudinal magnetic field contributed to constrain the induced plasma in the lateral direction so as to form a plasma plume with high temperature and high energy density.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China.
With the increasing development of intelligent robots and wearable electronics, the demand for high-performance flexible energy storage devices is drastically increasing. In this study, flexible symmetric microsupercapacitors (MSCs) that could operate in a wide working voltage window were developed by combining laser-direct-writing graphene (LG) electrodes with a phosphoric acid-nonionic surfactant liquid crystal (PA-NI LC) gel electrolyte. To increase the flexibility and enhance the conformal ability of the MSC devices to anisotropic surfaces, after the interdigitated LG formed on the polyimide (PI) film surface, the devices were further transferred onto a flexible, stretchable and transparent polydimethylsiloxane (PDMS) substrate; this substrate displayed favorable flexibility and mechanical characteristics in the bending test.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2024
School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Advancements in flexible electronic technology, especially the progress in foldable displays and under-display cameras (UDC), have created an urgent demand for high-performance colorless polyimide (CPI). However, current CPIs lack sufficient heat resistance for substrate applications. In this work, four kinds of rigid spirobifluorene diamines are designed, and the corresponding polyimides are prepared by their condensation with 5,5'-(perfluoropropane-2,2-diyl) bis(isobenzofuran-1,3-dione) (6FDA) or 9,9-bis(3,4-dicarboxyphenyl) fluorene dianhydride (BPAF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!