TIMELESS-TIPIN and UBXN-3 promote replisome disassembly during DNA replication termination in Caenorhabditis elegans.

EMBO J

The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.

Published: September 2021

The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin-RING ubiquitin ligase CUL-2 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC-48 "unfoldase". Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome-associated TIMELESS-TIPIN complex is required for CUL-2 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS-TIPIN, CUL-2 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM-7 subunit of CMG. Subsequently, the UBXN-3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4. We show that UBXN-3 is important in vivo for replisome disassembly in the absence of TIMELESS-TIPIN. Correspondingly, co-depletion of UBXN-3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN-3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408604PMC
http://dx.doi.org/10.15252/embj.2021108053DOI Listing

Publication Analysis

Top Keywords

replisome disassembly
12
dna replication
8
replication termination
8
caenorhabditis elegans
8
cmg helicase
8
disassembly
5
cmg
5
timeless-tipin
4
timeless-tipin ubxn-3
4
ubxn-3 promote
4

Similar Publications

TTF2 promotes replisome eviction from stalled forks in mitosis.

bioRxiv

November 2024

Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

When cells enter mitosis with under-replicated DNA, sister chromosome segregation is compromised, which can lead to massive genome instability. The replisome-associated E3 ubiquitin ligase TRAIP mitigates this threat by ubiquitylating the CMG helicase in mitosis, leading to disassembly of stalled replisomes, fork cleavage, and restoration of chromosome structure by alternative end-joining. Here, we show that replisome disassembly requires TRAIP phosphorylation by the mitotic Cyclin B-CDK1 kinase, as well as TTF2, a SWI/SNF ATPase previously implicated in the eviction of RNA polymerase from mitotic chromosomes.

View Article and Find Full Text PDF

USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination.

bioRxiv

September 2024

Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.

The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described.

View Article and Find Full Text PDF

The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated.

View Article and Find Full Text PDF

PARP1-dependent DNA-protein crosslink repair.

Nat Commun

August 2024

The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation).

View Article and Find Full Text PDF

Characterizing replisome disassembly in human cells.

iScience

July 2024

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.

To ensure timely duplication of the entire eukaryotic genome, thousands of replication machineries (replisomes) act on genomic DNA at any time during S phase. In the final stages of this process, replisomes are unloaded from chromatin. Unloading is driven by polyubiquitylation of MCM7, a subunit of the terminated replicative helicase, and processed by p97/VCP segregase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!