Objective: This study aimed to evaluate the effects of Coca-Cola®, Sprite®, and Maaza® on Microleakage, shear bond strength (SBS) and adhesive remnants underneath orthodontic brackets.

Materials And Methods: A total of 192 human premolar teeth were used in this study. The sample was divided into four groups: Artificial saliva (control) [Group 1], Coca-Cola [Group 2], Sprite [Group 3] and Maaza [Group 4]. All the samples were stored in artificial saliva and immersed in their respective testing media (except the control group) for 15 minutes 3 times a day, separated by intervals of 8 hours. The immersion cycle was repeated for 15 days. After the immersion cycle, 24 teeth from each group were tested for SBS and adhesive remnant index subsequently. The remaining 24 teeth from each group underwent dyeing with methylene blue and were analyzed stereomicroscopically to evaluate microleakage underneath the brackets. Kolmogorov-Smirnov and Shapiro normality tests were performed and homogeneity of variance was tested with the Levene test. One-way ANOVA and Kruskal-Wallis tests were carried out separately for SBS, ARI and microleakage. Statistical analyses were performed using SPSS 20 for Windows (SPSS Inc., Chicago) software.

Results: Coca-Cola showed a significant reduction in SBS and microleakage (p < 0.05) compared to the other groups. ARI did not show any significant differences between any groups (p > 0.05). The mean microleakage scores were higher for the gingival side of the brackets compared to the incisal side. Both Sprite and Maaza showed significant differences compared to artificial saliva, despite the SBS not being statistically significant (p > 0.05).

Conclusions: A significant reduction of SBS was observed in Coca-Cola while increased microleakage was seen in all three drinks compared to artificial saliva.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijdr.IJDR_936_18DOI Listing

Publication Analysis

Top Keywords

artificial saliva
16
shear bond
8
adhesive remnants
8
sbs adhesive
8
immersion cycle
8
teeth group
8
reduction sbs
8
compared artificial
8
microleakage
7
sbs
6

Similar Publications

Objectives:  Orthodontic bracket bond failure is an obstacle in clinical orthodontics. This study investigated the influence of pH cycling on the shear bond strength (SBS), adhesive remnant index (ARI), and survival probability of adhesive-precoated flash-free ceramic brackets.

Materials And Methods:  Forty mandibular premolars were randomly divided into two groups ( = 20): C: noncoated orthodontic brackets, and F: flash-free adhesive-precoated orthodontic brackets.

View Article and Find Full Text PDF

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Background: Acute marijuana intoxication can impair motor skills and cognitive functions such as attention and information processing. However, traditional tests, like blood, urine, and saliva, fail to accurately detect acute marijuana intoxication in real time.

Objective: This study aims to explore whether integrating smartphone-based sensors with readily accessible wearable activity trackers, like Fitbit, can enhance the detection of acute marijuana intoxication in naturalistic settings.

View Article and Find Full Text PDF

Background: Noninvasive caries treatments work topically, which may limit efficacy. The authors hypothesized that an alternative approach using mineral-loaded particles designed to target the subsurface of noncavitated caries lesions could be advantageous. This study shows in vitro proof-of-concept.

View Article and Find Full Text PDF

Development of in vitro oral processing model for different rice: Effects of saliva volume and chewing time on physicochemical properties of rice boluses.

Food Chem

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:

The in vitro model is widely preferred for digestion research due to its simplicity, reproducibility, and ethical advantages. However, the differences between in vivo and in vitro digestion present challenges. This study first developed an in vitro oral processing system to explore the influence of saliva volume and chewing time on the physicochemical properties of japonica rice (JR), indica rice (IR), and waxy rice (WR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!