Purpose: Accurately estimating the arterial input function for dynamic contrast-enhanced MRI is challenging. An arterial input function is typically determined from signal magnitude changes related to a contrast agent, often leading to underestimation of peak concentrations. Alternatively, signal phase recovers the accurate peak concentration for straight vessels but suffers from high noise. A recent method proposed to fit the signal in the complex plane by combining the advantages of the previous 2 methods. The purpose of this work is to refine this complex-based method to determine the venous output function (VOF), an arterial input function surrogate, from the superior sagittal sinus.
Methods: We propose a state-of-the-art complex-based method that includes direct compensation for blood inflow and signal phase correction accounting for the curvature of the superior sagittal sinus, generally assumed collinear with B . We compared the magnitude-, phase-, and complex-based VOF determination methods against various simulated biases as well as for 29 brain metastases patients.
Results: Angulation of the superior sagittal sinus relative to B varied widely within patients, and its effect on the signal phase caused an underestimation of peak concentrations of up to 65%. Correction significantly increased the VOF peak concentration for the phase- and complex-based VOFs in the cohort. The phase-based method recovered accurate peak concentrations but lacked precision in the tail of the VOF. Our complex-based VOF completely recovered the effect of inflow and resulted in a high-peak concentration with limited noise.
Conclusion: The new complex-based method resulted in high-quality VOF robust against superior sagittal sinus curvature and variations in patient positioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.28922 | DOI Listing |
Cureus
December 2024
Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA.
Bifrontal decompressive craniectomy (DC), which was once a popular technique for treating midline mass lesions, has seen a notable decline in its therapeutic use within modern neurosurgery. Despite its diminished clinical use, the procedure offers considerable value as an educational tool for surgical training. This study used a Thiel-embalmed cadaver to demonstrate the bifrontal DC procedure, including a Souttar incision, strategic (MacCarty, zygomatic, and apical) keyhole/burr hole placement, superior sagittal sinus suturing, left frontal lobe decortication, and microscopic visualization of the anterior cranial fossa.
View Article and Find Full Text PDFEur Spine J
January 2025
Service de Chirurgie du Rachis, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, 1 Avenue Molière, Strasbourg, France.
Introduction: In asymptomatic subjects, variations of sagittal alignment parameters according to age and pelvic incidence (PI) has been reported. The aim of this observational study was to describe thoraco-lumbar sagittal alignment in patients with degenerative scoliosis and to compare them to asymptomatic individuals, seeking for the specific effect of deformity in similar age and PI groups.
Materials And Methods: Full spine radiographs of 235 asymptomatic subjects and 243 scoliosis patients were analyzed: cervico-thoracic inflexion point (CTIP), thoraco-lumbar inflexion point (TLIP), lumbar lordosis (LL) L1-S1, LL (TLIP-S1), LL superior arch (TLIP-lumbar apex), LL inferior arch (lumbar apex-S1), PI, thoracic kyphosis (TK) T5-T12, TK T1-T12, number of vertebrae CTIP-TLIPandTLIP-S1.
Neurosurg Rev
January 2025
Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
The combination of congenital C1 occipitalization and C2-3 non-segmentation (i.e. "sandwich fusion") results in early development of atlantoaxial dislocation (AAD).
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Surgery, Section of Neurosurgery, Aga Khan University, Karachi, Pakistan.
Background: Intracranial arteriovenous malformations (AVMs) are extremely rare in the pediatric population, with an estimated prevalence of 0.014-0.028%.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.
The aim of this preliminary study was to morphologically and dimensionally characterize the cat's olfactory bulb in the sagittal plane and to establish potential relationships with the cranial conformation, based on the study of in vivo MRI images. Midsagittal and transverse T2-weighted images of the head of 40 cats subjected to MRI were selected. For each animal, the skull index was calculated to classify the cranial conformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!