Transgenic commercial cotton expressing Bacillus thuringiensis (Bt) Cry endotoxins or vegetative Vip toxins provide protection to cotton against bollworm attack. Continuous exposure of these targeted pests to cry toxins and to Bt commercial spray formulations has resulted in the development of resistance through natural selection. Spotted bollworm Earias vittella (Noctuidae: Lepidoptera) is considered to be one of the most destructive pests of cotton and okra crops in South Asia including Pakistan and has developed resistance to various synthetic insecticides. In the present study, the level of resistance in field populations of the spotted bollworm E. vittella against Bt Cry toxins has been evaluated for the first time. We collected twelve populations of E. vittella from three districts of Punjab, Pakistan for testing against four commercial Bt formulations containing different strains of B. thuringiensis subspecies kurstaki (Btk) with a range of Cry toxins. Low to high levels of resistance were found in the field populations compared with a laboratory-reared susceptible population of E. vittella (resistance ratios 6 to 111-fold). These results suggest that E. vittella has developed resistance against different Cry toxins after continuous exposure to Bt cotton in field. In order to prevent field control failures, regular insecticide resistance monitoring programs are required together with the use of integrated management approaches, including the use of Bt cotton varieties expressing two or more toxins to delay the development of resistance against Bt toxins in E. vittella.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toab137DOI Listing

Publication Analysis

Top Keywords

cry toxins
16
resistance
9
earias vittella
8
punjab pakistan
8
commercial formulations
8
bacillus thuringiensis
8
continuous exposure
8
development resistance
8
spotted bollworm
8
developed resistance
8

Similar Publications

Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.

View Article and Find Full Text PDF

Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression.

View Article and Find Full Text PDF

Insights into the structural changes that trigger receptor binding upon proteolytic activation of Bacillus thuringiensis Vip3Aa insecticidal protein.

PLoS Pathog

December 2024

Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

Article Synopsis
  • Bacillus thuringiensis (Bt) bacteria produce insecticidal proteins Cry and Vip3, which kill certain insect larvae by disrupting their gut cells through pore formation.
  • The Vip3Aa protoxin requires proteolytic activation to change its structure and enhance binding to the brush border membrane vesicles (BBMV) in insects, while the unactivated form shows little binding and no toxicity.
  • Research identified domain III of Vip3Aa as the main binding domain and highlighted critical amino acids (K385, K526, V529) that become exposed upon activation, which are essential for the protein's receptor binding and insecticidal effects.
View Article and Find Full Text PDF

Biophysical Analysis of Vip3Aa Toxin Mutants Before and After Activation.

Int J Mol Sci

November 2024

Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon 73170, Nakhon Pathom, Thailand.

Cry toxins from are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. also produces vegetative insecticidal protein (Vip3A), which can kill insect targets in the same group as Cry toxins but using different host receptors, making the combined application of Cry and Vip3A an exciting possibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!