Interpenetrating and random copolymer networks are vital in a number of industrial applications, including the fabrication of automotive parts, damping materials, and tissue engineering scaffolds. We develop a theoretical model for a process that enables the controlled growth of interpenetrating network (IPNs), or a random copolymer network (RCN) of specified size and mechanical properties. In this process, a primary gel "seed" is immersed into a solution containing the secondary monomer and crosslinkers. After the latter species are absorbed into the primary network, the absorbed monomers are polymerized to form the secondary polymer chains, which then can undergo further crosslinking to form an IPN, or undergo inter-chain exchange with the existing network to form a RCN. The swelling and elastic properties of the IPN and RCN networks can be tailored by modifying the monomer and crosslinker concentrations in the surrounding solution, or by tuning the enthalpic interactions between the primary polymer, secondary monomer and solvent through a proper choice of chemistry. This process can be used repeatedly to fabricate gels with a range of mechanical properties from stiff, rigid materials to soft, flexible networks, allowing the method to meet the materials requirements of a variety of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00611hDOI Listing

Publication Analysis

Top Keywords

random copolymer
12
growth interpenetrating
8
interpenetrating random
8
copolymer networks
8
mechanical properties
8
secondary monomer
8
controllable growth
4
networks
4
networks interpenetrating
4
networks vital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!