The Blue Nile basin is one of the hot-spots of soil erosion areas in Ethiopia. However, the impact of land use changes on soil erosion is poorly understood in the Tagaw watershed. Hence, the objective of the study is to assess the impact of land use changes on soil erosion in Tagaw watershed over the last 31 years. Rainfall, soil, satellite images and topographic data are acquired from field survey and secondary sources. A Revised Universal Soil Loss Equation (RUSLE) model is used to estimate soil erosion. The mean annual and total potential soil losses of the watershed are 19.3, 22.9, 26 and 0.06-503.56, 0.11-516.67, and 0.00-543.5 tons ha yr for 1995, 2006 and 2016 respectively. The highest soil loss is found for bare land. The RUSLE model further showed that the highest soil erosion occurred in 2016 whereas the lowest soil erosion occurred in 1995.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272008 | PMC |
http://dx.doi.org/10.1002/gch2.202000109 | DOI Listing |
Glob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:
The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).
View Article and Find Full Text PDFSci Total Environ
January 2025
Trent University, Peterborough, Ontario, Canada.
Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
USDA ARS, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, United States of America.
Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application.
View Article and Find Full Text PDFEnviron Manage
January 2025
School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK.
The adoption of sustainable land management practices (SLMPs) is crucial to improve soil health, and farm yield, and potentially limit the degradation of agricultural and ecological systems. However, farmers still encounter diverse challenges when trying to implement SLMPs. Research on the potential mitigation strategies to address the complex challenges to the adoption of SLMPs in the developing countries context is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!