AI Article Synopsis

Article Abstract

Aberrant expression of fibroblast growth factor 2 (FGF2) is a major cause of poor prognosis in patients with pancreatic cancer. MicroRNA (miRNA/miR) miR-203-3p is a newly identified miRNA that can affect the biological behavior of tumors. The present study investigated the function of miR-203-3p on the regulation of FGF2 expression, and its role in pancreatic cancer cell proliferation, apoptosis, invasion and migration. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of miR-203-3p and FGF2 . Cell Counting Kit-8, Annexin V-APC/7-AAD double-staining Apoptosis Detection kit, wound healing and Transwell assays were used to determine the proliferation, apoptosis, migration and invasion of pancreatic cancer cells. The binding of miR-203-3p to FGF2 was assessed by a luciferase reporter assay. The results demonstrated that miR-203-3p expression was downregulated in pancreatic cancer cells. Gain- and loss-of-function experiments indicated that miR-203-3p inhibited the proliferation, migration and invasion, and promoted the apoptosis of pancreatic cancer cells . In addition, it was found that alteration of miR-203-3p abolished the promoting effects of FGF2 on pancreatic cancer cells. The present study demonstrated that FGF2 significantly promoted the proliferation, invasion and migration of pancreatic cancer cells. The mechanism involved the binding of miR-203-3p to the 3'-untranslated region of FGF2 mRNA, resulting in the downregulation of FGF2. In conclusion, miR-203-3p inhibited FGF2 expression, regulated the proliferation and inhibited the invasion and migration of pancreatic cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258624PMC
http://dx.doi.org/10.3892/ol.2021.12887DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
36
cancer cells
28
invasion migration
16
migration pancreatic
12
pancreatic
9
cancer
9
fgf2
9
mir-203-3p
9
proliferation invasion
8
fibroblast growth
8

Similar Publications

Risk factors for delayed gastric emptying after pancreatoduodenectomy: a 10-year retrospective study.

Ann Med

December 2025

Department of Surgery, Faculty of Medicine, Unit of Hepato-Pancreato-Biliary Surgery and Abdominal Organ Transplantation, Doce de Octubre University Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain.

Background: Delayed gastric emptying (DGE) is a frequent complication of pancreatoduodenectomy (PD) and is associated with prolonged hospital stay, readmission, increased hospital costs and decreased quality of life. However, the pathophysiology of DGE remains unclear.

Methods: This is a retrospective study of patients who underwent PD for pancreatic or periampullary tumours.

View Article and Find Full Text PDF

Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).

Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.

Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!