Inflammation caused by the excessive production of pro-inflammatory mediators and cytokines in abnormally activated macrophages promotes the initiation and progression of many diseases along with oxidative stress. Previous studies have suggested that nargenicin A1, an antibacterial macrolide isolated from sp. may be a potential treatment for inflammatory responses and oxidative stress, but the detailed mechanisms are still not well studied. In this study, we investigated the inhibitory effect of nargenicin A1 on inflammatory and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish () models. Our results indicated that nargenicin A1 treatment significantly inhibited LPS-induced release of pro-inflammatory mediators including nitric oxide (NO) and prostaglandin E, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. In addition, nargenicin A1 attenuated the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1, reducing their extracellular secretion. Nargenicin A1 also suppressed LPS-induced generation of reactive oxygen species. Moreover, nargenicin A1 abolished the LPS-mediated nuclear translocation of nuclear factor-kappa B (NF-κB) and the degradation of inhibitor IκB-α, indicating that nargenicin A1 exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. Furthermore, nargenicin A1 showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. In conclusion, our findings suggest that nargenicin A1 ameliorates LPS-induced anti-inflammatory and antioxidant effects by downregulating the NF-κB signaling pathway, and that nargenicin A1 can be a potential functional agent to prevent inflammatory- and oxidative-mediated damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278209PMC
http://dx.doi.org/10.17179/excli2021-3506DOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
12
signaling pathway
12
oxidative stress
12
nargenicin
11
inflammatory oxidative
8
pro-inflammatory mediators
8
pathway nargenicin
8
nargenicin attenuates
4
attenuates lipopolysaccharide-induced
4
lipopolysaccharide-induced inflammatory
4

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

View Article and Find Full Text PDF

Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!