Bacteria frequently engage in obligate metabolic mutualisms with other microorganisms. However, it remains generally unclear how the resulting metabolic dependencies affect the ecological niche space accessible to the whole consortium relative to the niche space available to its constituent individuals. Here we address this issue by systematically cultivating metabolically dependent strains of different bacterial species either individually or as pairwise cocultures in a wide range of carbon sources. Our results show that obligate cross-feeding is significantly more likely to expand the metabolic niche space of interacting bacterial populations than to contract it. Moreover, niche expansion occurred predominantly between two specialist taxa and correlated positively with the phylogenetic distance between interaction partners. Together, our results demonstrate that obligate cross-feeding can significantly expand the ecological niche space of interacting bacterial genotypes, thus explaining the widespread occurrence of this type of ecological interaction in natural microbiomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41559-021-01505-0 | DOI Listing |
J Anim Ecol
January 2025
Environmental Defense Fund, Seattle, Washington, USA.
For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).
View Article and Find Full Text PDFAnn Bot
January 2025
Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
Background And Aims: Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA.
Background: Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations.
View Article and Find Full Text PDFNature
January 2025
Institute of Computational Biology, Helmholtz Center, Munich, Germany.
Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.
View Article and Find Full Text PDFEcol Evol
January 2025
Stelvio National Park Bormio Italy.
Interspecific interactions are important drivers of population dynamics and species distribution. These relationships can increase niche partitioning between sympatric species, which can differentiate space and time use or modify their feeding strategies. Roe deer and red deer are two of the most widespread ungulate species in Europe and show spatial and dietary overlap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!