In high school math, more instructional time helps, but the tracking dilemma remains.

Proc Natl Acad Sci U S A

William T. Grant Foundation, New York, NY 10165

Published: July 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307542PMC
http://dx.doi.org/10.1073/pnas.2109648118DOI Listing

Publication Analysis

Top Keywords

high school
4
school math
4
math instructional
4
instructional time
4
time helps
4
helps tracking
4
tracking dilemma
4
dilemma remains
4
high
1
math
1

Similar Publications

Purpose: This paper aims to delve into the critical aspect of supplier selection in the healthcare sector, emphasizing the significance of strategic sourcing in enhancing operational efficiency and quality of services. The primary aim is to develop a comprehensive framework for supplier evaluation that aligns with the unique requirements of hospitals, ultimately improving procurement processes and patient care outcomes.

Design/methodology/approach: The study leverages the renowned Carter's 7 C model as a foundational framework for supplier assessment, supplemented by insights gathered from interviews with experts in the New Product Introduction, Purchasing and Procurement departments of a leading hospital in India.

View Article and Find Full Text PDF

Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.

View Article and Find Full Text PDF

A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.

Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped.

View Article and Find Full Text PDF

Imidazole Cationic-Bridged Pillar[5]arene Polymer as a Recycle Adsorbent for Iodine Capture.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.

View Article and Find Full Text PDF

CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!