We used stable isotope-labeled glucose and palmitate tracer infusions, a hyperinsulinemic-euglycemic clamp, positron emission tomography of muscles and adipose tissue after [F]fluorodeoxyglucose and [O]water injections, and subcutaneous adipose tissue (SAT) biopsy to test the hypotheses that ) increased glucose uptake in SAT is responsible for high insulin-stimulated whole-body glucose uptake in people with obesity who are insulin sensitive and ) putative SAT factors thought to cause insulin resistance are present in people with obesity who are insulin resistant but not in those who are insulin sensitive. We found that high insulin-stimulated whole-body glucose uptake in insulin-sensitive participants with obesity was not due to channeling of glucose into SAT but, rather, was due to high insulin-stimulated muscle glucose uptake. Furthermore, insulin-stimulated muscle glucose uptake was not different between insulin-sensitive obese and lean participants even though adipocytes were larger, SAT perfusion and oxygenation were lower, and markers of SAT inflammation, fatty acid appearance in plasma in relation to fat-free mass, and plasma fatty acid concentration were higher in the insulin-sensitive obese than in lean participants. In addition, we observed only marginal or no differences in adipocyte size, SAT perfusion and oxygenation, and markers of SAT inflammation between insulin-resistant and insulin-sensitive obese participants. Plasma fatty acid concentration was also not different between insulin-sensitive and insulin-resistant obese participants, even though SAT was resistant to the inhibitory effect of insulin on lipolysis in the insulin-resistant obese group. These data suggest that several putative SAT factors commonly implicated in causing insulin resistance are normal consequences of SAT expansion unrelated to insulin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576507 | PMC |
http://dx.doi.org/10.2337/db21-0160 | DOI Listing |
Sports Med Health Sci
March 2025
Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, China.
Constipation is correlated with diminished cognitive function, revealing a possible rectum-brain connection. In this counter-balanced crossover trial, 13 elite triathletes underwent a Stroop test to assess cognitive function and executive control. The Stroop test was conducted both with and without magnesium oxide intake, with a 1-week washout period between sessions.
View Article and Find Full Text PDFCell Rep Med
January 2025
Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA. Electronic address:
Metabolic reprogramming of tumor cells is an emerging hallmark of cancer. Among all the changes in cancer metabolism, increased glucose uptake and the accumulation of lactate under normoxic conditions (the "Warburg effect") is a common feature of cancer cells. In this study, we develop a lactate-responsive drug delivery platform by targeting the Warburg effect.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland.
Background: We still know little about the effective pharmacological treatment of heart failure (HF) associated with the Fontan circulation. One of the new options may be sodium glucose cotransporter-2 inhibitors (SGLT2i), which have been proven effective in classic forms of left ventricular HF.
Objectives: To evaluate the effect and safety of SGLT2i inclusion in adults with Fontan circulation.
Mol Imaging Biol
January 2025
Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Purpose: Radionuclide-labeled fibroblast activation protein inhibitor (FAPI) is an emerging tumor tracer. We sought to assess the uptake and diagnostic performance of F-FAPI-42 PET/CT compared with simultaneous 2-deoxy-2[F]fluoro-D-glucose (F-FDG) PET/CT in primary and metastatic lesions in patients with malignant digestive system neoplasms and to determine the potential clinical benefit.
Procedures: Forty-two patients (men = 30, women = 12, mean age = 56.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!