Intermittent explosive disorder can be described as a severe "affective aggression" condition, for which drugs and other supportive therapies are not fully effective. In the first half of the 19th century, experimental studies progressively increased knowledge of aggressive disorders. A neurobiologic approach revealed the posterior hypothalamic region as a key structure for the modulation of aggression. In the 1960s, patients with severe aggressive disorder, frequently associated with intellectual disability, were treated by bilateral stereotactic lesioning of the posterior hypothalamic area, with efficacy. This therapy was later abandoned because of issues related to the misuse of psychosurgery. In the last 2 decades, however, the same diencephalic target has been selected for the reversible treatment by deep brain stimulation, with success. This chapter presents a comprehensive approach to posterior hypothalamic surgery for the treatment of severely aggressive patients and discusses the experimental steps that allowed this surgical target to be selected. Surgical experiences are reported, together with considerations on target features and related encephalic circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-819973-2.00007-1 | DOI Listing |
Vitam Horm
January 2025
Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.
The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea.
The significant correlation between ancient medicinal practices and brain function marks a revolutionary frontier in the field of neuroscience. Acupuncture, a traditional oriental medicine, can affect brain regions, such as the hypothalamus, anterior cingulate, posterior cingulate, and hippocampus, and produces specific therapeutic effects, such as pain relief, suppression of hypertension, and alleviation of drug addiction. Among the brain regions, the hypothalamus, a small yet critical region in the brain, plays a pivotal role in maintaining homeostasis by regulating a wide array of physiological processes, including stress responses, energy balance, and pain modulation.
View Article and Find Full Text PDFDev Cogn Neurosci
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the increase in mental health symptoms during adolescence. Although literature has largely focused on examining whole PG volume, recent findings have demonstrated associations among pubertal hormone levels, including dehydroepiandrosterone (DHEA), PG subregions, and mental health symptoms during adolescence. Despite the anterior PG's role in DHEA production, studies have not yet examined potential links with transdiagnostic symptomology (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!