Background: Bacterial microleakage is an important cause of apical periodontitis and endodontic treatment failure. This study aimed to assess the bacterial microleakage of nano-mineral trioxide aggregate (nano-MTA) as a sealer, Endoseal MTA, and GuttaFlow Bioseal sealers in atmospheric pressure, and simulated underwater diving and aviation conditions.
Methods: In this in vitro, experimental study, 180 extracted single-rooted teeth were cleaned and shaped, and were then randomly divided into three groups for single-cone obturation using Endoseal MTA, GuttaFlow Bioseal, or nano-MTA as a sealer. Each group was then randomly divided into three subgroups, and subjected to ambient atmospheric pressure, 2 atm pressure (to simulate underwater diving), and 0.5 atm pressure (to simulate aviation) using a custom-made pressure chamber. The teeth then underwent microbial leakage test using Streptococcus mutans (S. mutans), and the percentage of samples showing microleakage was recorded for up to 1 month, and analyzed using the Chi-square test.
Results: The three sealer groups were significantly different regarding bacterial microleakage (P < 0.05). The nano-MTA group showed significantly higher microleakage after 15 days than the other two groups (P = 0.006). The effect of pressure on bacterial microleakage was not significant in any sealer group (P > 0.05).
Conclusion: Within the limitations of this in vitro study, it may be concluded that single-cone obturation technique using nano-MTA as a sealer results in lower resistance to bacterial microleakage compared with the use of GuttaFlow Bioseal, and Endoseal MTA. Pressure changes in simulated underwater diving and aviation conditions had no significant effect on bacterial microleakage. Trial Registration Number This is not a human subject research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283829 | PMC |
http://dx.doi.org/10.1186/s12903-021-01699-6 | DOI Listing |
J Prosthodont Res
January 2025
School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
Purpose: This study aimed to evaluate the effect of functional loading on microgaps and microleakage at implant-abutment interfaces (IAIs) in the aesthetic zone when using different abutments and to provide a clinical reference for abutment selection.
Methods: This study included 30 patients with 36 implants divided into three groups: zirconia (Zr)-one-piece custom abutment, titanium (Ti)-custom abutment, and Ti-original abutment. Scanning electron microscopy was used to examine alterations in the microgaps at the IAIs under functional loading.
Int J Mol Sci
November 2024
Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
Intracanal medicaments are an important adjunct to the effective disinfection of the root canal system. However, conventional intracanal medicaments do not provide adequate protection against , which is the organism of interest in many cases of root canal failures. This study aimed to evaluate the influence of biosynthesized calcium oxide nanoparticles (CaO NPs) on the antibacterial activity, pH, microleakage and cytotoxicity of intracanal medicaments.
View Article and Find Full Text PDFBMC Oral Health
September 2024
Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
Background: Apexification is a procedure that promotes apical closure by forming mineralized tissue in the apex region of a nonvital young permanent tooth. Calcium silicate-based cement like Mineral trioxide aggregate (MTA) and Biodentine are commonly employed as apical barriers to facilitate this process. Microleakage, defined as the leakage along the junction between the canal wall and filling material, is a crucial aspect to assess in MTA and Biodentine applications as apical barriers, as it directly impacts the prevention of bacterial seepage and maintenance of structural integrity.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Pediatric Dentistry Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia.
To assess micro-tensile bond strength (μTBS), degree of conversion (DC), microleakage (ML) antibacterial efficacy, and adhesive remnant index (ARI) of orthodontic brackets to enamel with different concentrations of photoactivated riboflavin-doped hydroxyapatite (HA) nanospheres (NS) (0%,1%,5% and 10%) and 0.5 wt% RF alone in orthodontic adhesive. Samples were included on the predefined inclusion criteria and positioned up to the cementoenamel junction (CEJ).
View Article and Find Full Text PDFInt Orthod
December 2024
Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Background And Purpose: The aim of this study was to evaluate the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing photoactivated zinc oxide nanoparticles (ZnONPs) on Streptococcus mutans biofilm around ceramic and metal brackets.
Material And Methods: Following the minimum inhibitory concentration (MIC) determination for ZnONPs, shear bond strength (SBS) was tested for composites containing different concentrations of ZnONPs. The chosen concentration was used to evaluate the microleakage, anti-bacterial, and anti-demineralization properties.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!