Progress in electrochemical technologies, such as automotive batteries, supercapacitors, and fuel cells, depends greatly on developing improved charged interfaces between electrodes and electrolytes. The rational development of such interfaces can benefit from the atomistic understanding of the materials involved by first-principles quantum mechanical simulations with Density Functional Theory (DFT). However, such simulations are typically performed on the electrode surface in the absence of its electrolyte environment and at constant charge. We have developed a new hybrid computational method combining DFT and the Poisson-Boltzmann equation (P-BE) capable of simulating experimental electrochemistry under potential control in the presence of a solvent and an electrolyte. The charged electrode is represented quantum-mechanically via linear-scaling DFT, which can model nanoscale systems with thousands of atoms and is neutralized by a counter electrolyte charge via the solution of a modified P-BE. Our approach works with the total free energy of the combined multiscale system in a grand canonical ensemble of electrons subject to a constant electrochemical potential. It is calibrated with respect to the reduction potential of common reference electrodes, such as the standard hydrogen electrode and the Li metal electrode, which is used as a reference electrode in Li-ion batteries. Our new method can be used to predict electrochemical properties under constant potential, and we demonstrate this in exemplar simulations of the differential capacitance of few-layer graphene electrodes and the charging of a graphene electrode coupled to a Li metal electrode at different voltages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0056514 | DOI Listing |
Alzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Inhibitory interneurons normally regulate neural networks underlying memory and cognition, but are disrupted in Alzheimer's disease. Proper interneuron activity reduces amyloid-beta, whereas hyperexcitability elevates amyloid levels. Still, the underlying pathologic processes mediating interneuron dysfunction remain unknown.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.
To elucidate interfacial dynamics during electrocatalytic reactions, it is crucial to understand the adsorption behavior of organic molecules on catalytic electrodes within the electric double layer (EDL). However, the EDL structure in aqueous environments remains intricate when it comes to the electrochemical amination of acetone, using methylamine as a nitrogen source. Specifically, the interactions of acetone and methylamine with the copper electrode in water remain unclear, posing challenges in the prediction and optimization of reaction outcomes.
View Article and Find Full Text PDFAIP Adv
December 2024
Center for Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém 8200, Hungary.
We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, . Planar slits ( = 1), cylindrical pores ( = 2), and spherical cavities ( = 3) are considered. The walls have a negative surface charge density.
View Article and Find Full Text PDFPrecis Chem
December 2024
Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China.
Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!