Since the frequency offset estimation (FOE) must be implemented before the subcarrier de-multiplexing and chromatic dispersion compensation (CDC) for digital subcarrier multiplexing (DSM) signals, traditional FOE algorithms for single carrier transmission is no longer suitable. Here, we propose a hardware-efficient blind FOE solution for the DSM signals by monitoring spectral dips in the frequency domain. With the use of a smoothing filter, the estimation accuracy of FOE can be significantly increased. Moreover, we identify that the proposed FOE method is robust to various transmission impairments, including amplified spontaneous emission (ASE) noise, optical filtering, and fiber nonlinearity. The effective function of the proposed FOE method is numerically and experimentally verified under scenarios of both back-to-back (B2B) and the 2560 km standard single-mode fiber (SSMF) transmission, leading to a FOE error less than 100 MHz with a FFT size of 1024.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.425688 | DOI Listing |
Since the frequency offset estimation (FOE) must be implemented before the subcarrier de-multiplexing and chromatic dispersion compensation (CDC) for digital subcarrier multiplexing (DSM) signals, traditional FOE algorithms for single carrier transmission is no longer suitable. Here, we propose a hardware-efficient blind FOE solution for the DSM signals by monitoring spectral dips in the frequency domain. With the use of a smoothing filter, the estimation accuracy of FOE can be significantly increased.
View Article and Find Full Text PDFWe experimentally demonstrate 8 × 240-Gb/s super-Nyquist wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission on a 50-GHz grid with a net spectral efficiency (SE) of 4b/s/Hz adopting hardware-efficient simplified heterodyne detection. 9-ary quadrature-amplitude-modulation-like (9QAM-like) processing based on multi-modulus blind equalization (MMBE) is adopted to reduce analog-to-digital converter (ADC) bandwidth requirement and improve receiver sensitivity. The transmission distance at the soft-decision forward-error-correction (SD-FEC) threshold of 2 × 10(-2) is 2 × 420 km based on digital post filtering while largely extended to over 5 × 420 km based on 9QAM-like processing, which well illustrates 9QAM-like processing is more efficient for heterodyne coherent WDM system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!